Study of an Expert System for Safety Assessment of Soft Soil Roadbed

2011 ◽  
Vol 368-373 ◽  
pp. 2071-2074
Author(s):  
Chun Yuan Liu ◽  
Zhuan Wang ◽  
Sha Sha Jin

A new expert system was built for safety assessment of soft soil roadbed, in which the characteristics was taken into account by using Analytic Hierarchy Process (AHP) for identifying weight matrix of evaluating index, Fuzzy Synthetically Judgment for modeling safety evaluation of soft soil roadbed. The authors had attempted to develop the expert system to be comprehensive, concise, scientific, independent and flexible. Also, the system had been used to assess the safety of the Binhai highway of Tangshan, China. The results showed that the system is objective, feasible and practical, and can be used to assess the safety of soft soil roadbed.

Author(s):  
Yonghong Yang ◽  
Yu Chen ◽  
Zude Tang

Increasing traffic volume and insufficient road lanes often require municipal roads to be reconstructed and expanded. Where a road passes under a bridge, the reconstruction and expansion project will inevitably have an impact on the bridge. To evaluate the safety impact of road engineering projects on bridges, this paper evaluates the safety of the roads and ancillary facilities of highway bridges involved in municipal road engineering projects. Based on a comprehensive analysis of the safety factors of municipal roads undercrossing existing bridges, a fuzzy comprehensive analytic hierarchy process (AHP) evaluation method for the influence of road construction on the safety of existing bridges is proposed. First, AHP is used to select 11 evaluation factors. Second, the target layer, criterion layer, and index layer of evaluation factors are established, then a safety evaluation factor system is formed. The three-scale AHP model is used to determine the weight of assessment indexes. Third, through the fuzzy comprehensive AHP evaluation model, the fuzzy hierarchical comprehensive evaluation is carried out for the safety assessment index system. Finally, the fuzzy comprehensive evaluation method is applied to the engineering example of a municipal road undercrossing an existing expressway bridge. The comprehensive safety evaluation of the existing bridge reflects the practicability and feasibility of the method. It is expected that, with further development, the method will improve the decision-making process in bridge safety assessment systems.


2015 ◽  
Vol 713-715 ◽  
pp. 1610-1614
Author(s):  
Yan Li ◽  
Xiao Dong Mu ◽  
Wei Song ◽  
Hui Wei Shi

When using the traditional AHP to evaluate the system,the method of endow with weight is to request expert build the judgment matrix of every hierarchies. The method is over-subjective for its overdependence on expert system. In view of this, this paper puts forward an analytic hierarchy process method based on the cask theory. This method penalizes the index whose index value is too low to having a strong impact on overall system performance. Using this method achieves the goal of reducing the subjectivity. Finally, according to the example, this method’s superiority is proved.


2021 ◽  
Vol 35 (6) ◽  
pp. 61-67
Author(s):  
Soo-Kyung Shin ◽  
Young-Hoon Bae ◽  
Jun-Ho Choi

Long-term care hospitals for the elderly are places for the elderly and patients with impaired mobility to live in, but these places face a high risk of great damage in the event of a fire. The standards for fire safety at long-term care hospitals for the elderly are limited to inspection of firefighting facilities and training plans, with no index to evaluate the evacuation plans, facilities for evacuation in case of fire, and the fire response manuals of long-term care hospitals for the elderly. Therefore, this study tries to carry out a basic analysis and establish fire safety evaluation indices for long-term care hospitals for the elderly. To that end, the study derives the importance and priorities of the indices related to fire safety in long-term care hospitals for the elderly through an analytic hierarchy process questionnaire surveying 44 firefighting experts. Finally, considering the importance and priorities of the indices, this study presents fire safety evaluation standards (drafts) for long-term care hospitals for the elderly.


2016 ◽  
Author(s):  
H. Z. Su ◽  
M. Yang ◽  
Z. P. Wen

Abstract. High rocky slope is an open complex giant system with contradiction among different influencing factors and coexistence of qualitative and quantitative information. This study presents a comprehensive intelligent evaluation method of high rocky slope safety by an integrated analytic hierarchy process, extension matter element model and entropy-weight to assess the safety behavior of the high rocky slope. The proposed intelligent evaluation integrates subjective judgments derived from the analytic hierarchy process with the extension matter model and entropy-weight into a multiple indexes dynamic safety evaluation approach. A combining subjective and objective comprehensive evaluation process, a more objective manner through avoiding subjective effects on the weights and a qualitative safety assessment and quantitative safety amount are presented in the proposed method. The detailed computational procedures were also provided to illustrate the integration process of the above methods. Safety analysis of one high rocky slope is conducted to illustrate that this approach can adequately handle the inherent imprecision and contradiction of the human decision-making process and provide the flexibility and robustness needed for the decision maker to better monitor the safety behavior of high rocky slope. This study was the first application of proposed integrated evaluation method to safety assessment of high rocky slope, which also indicated that it can also be applied to other similar problems.


2010 ◽  
Vol 20-23 ◽  
pp. 196-201
Author(s):  
Ge Ning Xu ◽  
Fan Jiang

By combined fuzzy comprehensive evaluation with AHP (Analytic Hierarchy Process) together, a safety assessment model for overhead traveling crane is set up in regard to deficiency of safety assessment method for crane at present, which can evaluate safety of overhead traveling crane in-service qualitatively and quantitatively. Through a safety analysis and assessment on general overhead traveling crane, the result of assessment is in accord with the practical situation of overhead traveling crane. It can reflect more fully the safety of the whole crane system and the influence and level of each factor to whole crane system safety, witch an effective synthetic evaluation method is put forward for the safety evaluation of crane.


Sign in / Sign up

Export Citation Format

Share Document