Research of Prestressed Concrete Hollow Multi-Ribbed Composite Box Girder

2011 ◽  
Vol 368-373 ◽  
pp. 705-709
Author(s):  
Ping Hu ◽  
Dong Qi Zhao ◽  
Hui Li ◽  
Gui Feng Song ◽  
Yi Jun Tang

Base the shortcomings of pre-simple-supported post-continuous girder bridge construction, a new beam-bridge convert structure system is proposed, that is a kind of structure form of prestressed concrete hollow multi-ribbed composite box girders, the calculation method of two phase and noting are put forward. the kind of Cast-in-place assembly structure is light self-weight, force structure reasonable, easy construction, overall good and overall cost low.

2013 ◽  
Vol 838-841 ◽  
pp. 1014-1017
Author(s):  
Fan Guo ◽  
Yong Qing Yang ◽  
Sheng Qian Huang

Through the checking comparison of example bridge, to analysis the major causes of the cracking and too much deflection for prestressed concrete continuous box girder bridge. Calculated weak position and the current presence of cracks in the bridge position basically consistent, so cracks mainly caused by the prestress loss, concrete creep and the temperature effect, the structure stiffness weakened after cracking, then the actual mid-span deflection is greater than the calculated values bound. Therefore, the cracking and too much deflection appear simultaneous and mutual promote. The view that by improving the mechanical behavior of box girders, design parameters optimization, just the fundamental solution to cracking and too much deflection, also, several key issues need study to be addressed.


2014 ◽  
Vol 501-504 ◽  
pp. 1323-1327
Author(s):  
Xu Luo ◽  
Lu Rong Cai

When the cantilever construction is adopted by the prestressed concrete continuous girder bridge, the order of two key procedures between removing temporary support and tensing remanent prestressed cable is used to be ignored. In order to study the influence of procedure inversion, the influences on bridge shape, stress distribution and prestressing loss were calculated for one common prestressed continuous concrete box girder bridge by MIDAS CIVIL 2006, respectively. The obtained result presents that: the influence on the bridge shape and the prestressing loss are not apparent, but the influence on the stress distribution is serious; the maximal compressive stress of procedure inversion is more 42.3% than common construction procedure only by tensing the remaining steel beams at box girder; especially, the combining area between the box girder and temporary support is easy to pull out. So, the procedure inversion construction method cant be accepted.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Shi-Jun Zhou

Most of the previous researches conducted on shear lag of box girders were only concerned about simple types of structures, such as simply supported and cantilever beams. The structural systems concerned in these previous researches were considered as determined and unchangeable. In this paper, a finite element method considering shear lag and creep of concrete was presented to analyze the effect of dynamic construction process on shear lag in different types of concrete box-girder bridges. The shear lag effect of the three types of a two-span continuous concrete beam classified by construction methods was analyzed in detail according to construction process. Also, a three-span prestressed concrete box-girder bridge was analyzed according to the actual construction process. The shear lag coefficients and stresses on cross sections along the beam including shear lag were obtained. The different construction methods, the changes of structural system with the construction process, the changes of loading and boundary conditions with the construction process and time, the prestressing, and creep were all imitated in the calculations. From comparisons between the results for beams using different construction methods, useful conclusions were made.


2021 ◽  
Author(s):  
Waqar Khan

Bridges built with adjacent precast, prestressed concrete box-girders are a popular and economical solution for short-span bridges because they can be constructed rapidly. The top flanges of the precast box girders form the bridge deck surface. A shear key is introduced between the adjacent boxes over the depth of the top flange (i.e. 225 mm thick as the thickness of the box's top flange). Canadian Highway Bridge Design Code, CHBDC specifies empirical equations for the moment and shear distribution factors for selected bridge configurations but not for adjacent precast concrete box-girder bridge type. In this study, a parametric study was conducted, using the 3D finite-element modeling, and a set of simplified equations for the moment, shear and deflection distribution factors for the studied bridge configuration was developed.


Author(s):  
Shubham Sirse ◽  
Kuldeep R. Dabhekar ◽  
Isha P. Khedikar ◽  
M. B. Saiwala

Bridge is the structure which is used for carrying the traffic over the valley or river by connecting highways or railways. There are types of bridges which are T-beam bridges and box girder bridges where the T-beams are effective in resisting bending providing ductility to the bridges. While box girders gives high torsional stiffness providing ductility, stability and also aesthetics. Different codes with varying design philosophy are used for designing these bridges such as IRC:21-2000 and IRC:112-2011. Hence the purpose of this paper is to compare the results of analysis and design of different papers performed using these codes for both the types of bridges i.e. T-beam and box girder bridge. Various researchers studies are available on the design and analysis of T-beam bridge and box girder bridge using IRC:112-2011 and IRC:21-2000. The purpose of this study is to determine the most economical and preferable design code for both T-beam bridges and box girder bridges.


2014 ◽  
Vol 644-650 ◽  
pp. 4987-4990
Author(s):  
Ya Xun Yang ◽  
Gao Gong

According to the structure and construction characteristics of prestressed concrete (PC) continuous beam bridge and combined with the construction monitoring method of continuous beam bridge, this paper introduces the girder deflection test technology and method of prestressed concrete continuous box girder bridge, also analyzes the various factors which affect the linear monitoring. And draw the conclusion through the analysis of the deflection and linear monitoring of LinGang big bridge.


2014 ◽  
Vol 501-504 ◽  
pp. 1182-1186 ◽  
Author(s):  
Kong Jian Shen ◽  
Pei Feng Li ◽  
Qiao Wang ◽  
Shui Wan

This paper presents a survey of construction techniques for pre-stressed concrete (PC) box-girder bridge with corrugated steel webs in recent decades. The structural forms of the bridge have experienced simply supported beam bridge, continuous girder bridge, cable-stayed bridge and the continuous rigid frame bridge. Meanwhile, the construction technologies were constantly innovated, including cast-in-situ, precast and the combination of them. The processing and installation technologies of corrugated steel webs and several typical construction techniques for PC box-girder with corrugated steel webs were elaborated, such as full framing construction, cantilever construction, span-by-span construction, incremental launching construction and some other various innovative ways. The valuable experiences in a variety of construction methods were summed up. The results show that some innovative construction ways should be developed by fully utilizing the corrugated steel webs as a guide beam or a work platform to improve the efficiency of construction.


2014 ◽  
Vol 644-650 ◽  
pp. 895-898
Author(s):  
Ya Xun Yang ◽  
Wei Ya Fan

According to the structure and construction characteristics of PC continuous beam bridge and combined with the construction monitoring method of continuous beam bridge, this paper introduces the girder stress strain test technology and method of prestressed concrete continuous box girder bridge, also analyzes the various factors which affect the stress test. After monitoring LinGang big bridge, draw the conclusion through the analysis of its stress and strain.


2021 ◽  
Author(s):  
Waqar Khan

Bridges built with adjacent precast, prestressed concrete box-girders are a popular and economical solution for short-span bridges because they can be constructed rapidly. The top flanges of the precast box girders form the bridge deck surface. A shear key is introduced between the adjacent boxes over the depth of the top flange (i.e. 225 mm thick as the thickness of the box's top flange). Canadian Highway Bridge Design Code, CHBDC specifies empirical equations for the moment and shear distribution factors for selected bridge configurations but not for adjacent precast concrete box-girder bridge type. In this study, a parametric study was conducted, using the 3D finite-element modeling, and a set of simplified equations for the moment, shear and deflection distribution factors for the studied bridge configuration was developed.


2013 ◽  
Vol 438-439 ◽  
pp. 1093-1097
Author(s):  
Ke Chen ◽  
Lei Wang

Prestressed concrete continuous wide box girder bridge is widely used in urban bridges, because of its large width-span ratio, spatial effects from unbalance load cannot be ignored. When the bridge was analyzed by beam element system, the increased coefficient of unbalance loading is used to simplified space problem into plane problem. Spatial effect of wide box girder under unbalance loading is calculated by solid finite element method, and used in a project example in Hangzhou. Comparing analysis results of solid finite element with other simplified methods, it shows that the solid element method is more applicable and accurate. This method and results offer reference for similar bridge design calculation.


Sign in / Sign up

Export Citation Format

Share Document