Damage Sensitivity Analysis for Main Design Parameters of Steel Reinforced Concrete Column

2011 ◽  
Vol 374-377 ◽  
pp. 2566-2569
Author(s):  
Shan Suo Zheng ◽  
Yi Hu ◽  
Qing Lin Tao ◽  
Zhi Qiang Li

As an indispensable force component to composite structure, the seismic wave energy inputted into integral structure is dissipated by damping force working and plastic hysteresis of steel reinforced concrete column which is taken as research object. According to the condition that the SRC column is mainly used to dissipate the seismic wave energy, the ultimate energy dissipation capacity of SRC column subjected to cyclic loading is taken as the damage characterization. Based on the related theoretical analysis and experimental research, the method for calculating ultimate energy dissipation capacity of SRC column is proposed and the damage sensitivity of various design parameters which contain the section dimension, concrete strength degree and steel ratio are analyzed, then the influence laws of main design parameters impacted on damage evolution of SRC column are revealed in this paper. The research shows that sectional dimension is the most sensitive factor in the damage of SRC column and the steel ratio takes the second place, and then the strength of concrete is the most insensitive design parameter. The achievements will provide theoretical support for establishing the storey damage model of SRC frame structure under seismic excitation.

2011 ◽  
Vol 374-377 ◽  
pp. 2574-2577
Author(s):  
Shan Suo Zheng ◽  
Qing Lin Tao ◽  
Yi Hu ◽  
Zhi Qiang Li

As an indispensable force component to the hybrid structure, the seismic wave energy inputted into integral structure is dissipated by damping force working and plastic hysteresis of reinforced concrete shear wall which is taken as the first seismic fortification line of structure. Considering of the condition that the RC shear wall is mainly used to dissipate the seismic wave energy, this paper takes the ultimate energy dissipation capacity of reinforced concrete shear wall subjected to cyclic loading as the damage characterization. According to the related theoretical analysis and experimental research, the method for calculating ultimate energy dissipation capacity of RC shear wall is proposed and the damage sensitivity of various design parameters which contain the sectional thickness, the strength of concrete and reinforcement ratio are analyzed, then the influence laws of main design parameters impacted on damage evolution of RC shear wall are revealed in this paper. The research shows that sectional thickness is the most sensitive factor in the damage of reinforced concrete shear wall and the concrete strength degree takes the second place, and then the reinforcement ratio is the most insensitive design parameter. The research achievements will provide theoretical support for establishing the storey damage model of SRC frame-RC core wall hybrid structure under seismic excitation.


2013 ◽  
Vol 351-352 ◽  
pp. 615-618 ◽  
Author(s):  
Jian Hua Chen ◽  
Chao Ma ◽  
Jian Hua Li ◽  
Qin Qian

In order to analyze the mechanical properties of the remaining carrying capacity of steel reinforced concrete columns after exposure to fire, full preparations must be needed. In this paper, the numerical simulation of the temperature field of steel reinforced concrete column section was being adopted the finite element analysis software MSC.MARC to analyze. Temperature distribution law of the column cross-section in the case of uneven fire was obtained. There has a nice agreement between calculation and original test data which created the conditions for high temperature and high temperature performance analysis for SRC columns


2013 ◽  
Vol 470 ◽  
pp. 958-961
Author(s):  
Yeun Seung Lee ◽  
Jin Tak Oh ◽  
Young Sik Kim ◽  
Young K. Ju

To overcome disadvantages of usual Cast-In-Place (CIP) concrete pile methods in top-down construction, some prototypes of a joint of the PHC pile to column that directly connects a column to a PHC pile are analytically studied. With the consideration of strength requirement and stress concentration of joint of the PHC pile to column, we suggest the most appropriate one.


2013 ◽  
Vol 351-352 ◽  
pp. 359-362 ◽  
Author(s):  
Xin Wang

This paper, the mechanics characteristic of T-shaped section steel reinforced concrete column under low period repeated loading by using large-scale finite element analysis software ABAQUS was analyzed, combined existing research, the influence of the performance of ductility under different steel ratio and axial compression ratio was studied, we concluded that the T-shaped section steel reinforced concrete column has the very good ductility performance, and put forward the axial compressive ratio limit under the different parameters, and to provide the reference for future research and application.


2013 ◽  
Vol 351-352 ◽  
pp. 401-405
Author(s):  
Cheng Zhu Qiu ◽  
Gang Yang

The steel reinforced concrete column is one of the important members for structures, it is essential to study the high temperature performance of concrete column. The numerical simulation research is done using finite element software ANSYS. Under the high temperature, the analysis of the compressive bearing capacity and flexural capacity of the concrete columns strengthened by CFRP is done, and the compressive bearing capacities of different cross-section concrete columns strengthened with CFRP are tested.


2007 ◽  
Vol 5 (2) ◽  
pp. 223-234 ◽  
Author(s):  
Ryoichi Shohara ◽  
Yoshikazu Sawamoto ◽  
Kazumasa Imai ◽  
Haruo Nakazawa ◽  
Hiroyuki Narihara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document