Vision-Based Guidance for an Unmanned Aerial Vehicle Following a Moving Target

2011 ◽  
Vol 383-390 ◽  
pp. 7556-7562
Author(s):  
Tian Qin ◽  
Wan Chun Chen ◽  
Xiao Lan Xing

This paper presents a real-time optical flow algorithm for a vision-based guidance of an unmanned aerial vehicle (UAV). The optical flow algorithm detects a moving target, and obtains the optical position and optical flow vectors of the target from the image sequence. Then, a vision-based guidance of the UAV is designed to follow the moving target. Additionally, the control law of the imaging seeker uses visual information from the image sequence for target tracking. The method was tested on a 3 degree of freedom (3DOF) dual-rotor UAV with a video camera and the result proved the effectiveness of this method.

2020 ◽  
Vol 10 (4) ◽  
pp. 1300 ◽  
Author(s):  
Xin Zhao ◽  
Zhou Zhou ◽  
Xiaoping Zhu ◽  
An Guo

This paper describes our work on a small, hand-launched, solar-powered unmanned aerial vehicle (UAV) suitable for low temperatures and high altitudes, which has the perpetual flight potential for conservation missions for rare animals in the plateau area in winter. Firstly, the conceptual design method of a small, solar-powered UAV based on energy balance is proposed, which is suitable for flight in high-altitude and low-temperature area. The solar irradiance model, which can reflect the geographical location and time, was used. Based on the low-temperature discharge test of the battery, a battery weight model considering the influence of low temperature on the battery performance was proposed. Secondly, this paper introduces the detailed design of solar UAV for plateau area, including layout design, structure design, load, and avionics. To increase the proportion of solar cells covered, the ailerons were removed and a rudder was used to control both roll and yaw. Then, the dynamics model of an aileron-free layout UAV was developed, and the differences in maneuverability and stability of aileron-free UAV in plateau and plain areas were analyzed. The control law and trajectory tracking control law were designed for the aileron-free UAV. Finally, the flight test was conducted in Qiangtang, Tibet, at an altitude of 4500 m, China’s first solar-powered UAV to take off and land above 4500 m on the plateau in winter (−30 °C). The test data showed the success of the scheme, validated the conceptual design method and the success of the control system for aileron-free UAV, and analyzed the feasibility of perpetual flight carrying different loads according to the flight energy consumption data.


2018 ◽  
Vol 14 (6) ◽  
pp. 155014771878175 ◽  
Author(s):  
Shahrukh Ashraf ◽  
Priyanka Aggarwal ◽  
Praveen Damacharla ◽  
Hong Wang ◽  
Ahmad Y Javaid ◽  
...  

The ability of an autonomous unmanned aerial vehicle to navigate and fly precisely determines its utility and performance. The current navigation systems are highly dependent on the global positioning system and are prone to error because of global positioning system signal outages. However, advancements in onboard processing have enabled inertial navigation algorithms to perform well during short global positioning system outages. In this article, we propose an intelligent optical flow–based algorithm combined with Kalman filters to provide the navigation capability during global positioning system outages and global positioning system–denied environments. Traditional optical flow measurement uses block matching for motion vector calculation that makes the measurement task computationally expensive and slow. We propose the application of an artificial bee colony–based block matching technique for faster optical flow measurements. To effectively fuse optical flow data with inertial sensors output, we employ a modified form of extended Kalman filter. The modifications make the filter less noisy by utilizing the redundancy of sensors. We have achieved an accuracy of ~95% for all non-global positioning system navigation during our simulation studies. Our real-world experiments are in agreement with the simulation studies when effects of wind are taken into consideration.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 106931-106940 ◽  
Author(s):  
Yueqi Hou ◽  
Xiaolong Liang ◽  
Lyulong He ◽  
Jiaqiang Zhang

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Matthew B. Rhudy ◽  
Yu Gu ◽  
Haiyang Chao ◽  
Jason N. Gross

This paper offers a set of novel navigation techniques that rely on the use of inertial sensors and wide-field optical flow information. The aircraft ground velocity and attitude states are estimated with an Unscented Information Filter (UIF) and are evaluated with respect to two sets of experimental flight data collected from an Unmanned Aerial Vehicle (UAV). Two different formulations are proposed, a full state formulation including velocity and attitude and a simplified formulation which assumes that the lateral and vertical velocity of the aircraft are negligible. An additional state is also considered within each formulation to recover the image distance which can be measured using a laser rangefinder. The results demonstrate that the full state formulation is able to estimate the aircraft ground velocity to within 1.3 m/s of a GPS receiver solution used as reference “truth” and regulate attitude angles within 1.4 degrees standard deviation of error for both sets of flight data.


Doklady BGUIR ◽  
2019 ◽  
pp. 50-57
Author(s):  
A. A. Lobaty ◽  
A. Y. Bumai ◽  
Du Jun

The purpose of the scientific research, results are determinated in the article, is to analytically synthesize the control law of an unmanned aerial vehicle while guiding one along the trajectory that specified by the reference points of space in an inertial coordinate system. The analysis of various existing approaches of the formation of a given flight path of an unmanned aerial vehicle based on various mathematical formulations of the problem is carried out. To achieve the goal, the flight path is considered as separate intervals, where the control optimization problem is solved. The optimization criterion in general form is substantiated and its presentation in the form of a minimized quadratic quality functional is convenient for analytical control synthesis. As components of the functional, the parameters of the deviation of the flight path of the aircraft from the specified points of space are considered, as well as the predicted parameters of the velocity vector and the control normal acceleration. Moreover, at each specified point in space, the direction of the trajectory to the subsequent point is taken into account, that ensures optimal curvature of the trajectory by specified flight speed of the unmanned aerial vehicle. As a result of analytical synthesis, mathematical dependences are obtained to determine control acceleration, which allow us to get a specified optimal control law on board an unmanned aerial vehicle, which ultimately ensures minimum energy consumption. The validity of the proposed theoretical provisions is confirmed by a clear example, where for a simplified mathematical problem statement the optimal laws of change in control acceleration and the trajectory parameters of an unmanned aerial vehicle are calculated by computer simulation.


Sign in / Sign up

Export Citation Format

Share Document