The High Efficient Sediment-Transport Water Volume in the Lower Yellow River

2011 ◽  
Vol 403-408 ◽  
pp. 228-234
Author(s):  
Jun Yan ◽  
Biao Liang ◽  
Yu Hua Zhang ◽  
Hui Cao

Analyzed the sediment-transport process in high sediment-laden river, the new concept and calculating method for sediment-transport water volume are proposed. Based on field data of sediment and water volume in the Lower Yellow River from 1950 to 2000, the sediment-transport water volume and unit sediment-transport water volume in LYR are calculated. Meanwhile, relations between them and influencing factors are confirmed to calculate efficient sediment-transport water volume after construction of the Xiaolangdi reservoir. Results gained from these functions are consistent well with the facts of real water-sediment regulation in LYR.

2011 ◽  
Vol 214 ◽  
pp. 265-270
Author(s):  
Jun Yan ◽  
Biao Liang ◽  
Hui Cao ◽  
Yu Hua Zhang

Analyzed the sediment-transport process in high sediment-laden river, the new concept and calculating method for sediment-transport water volume are proposed. Based on field data of sediment and water volume in the Lower Yellow River from 1950 to 2000, the sediment-transport water volume and unit sediment-transport water volume in LYR are calculated. Meanwhile, relations between them and influencing factors are confirmed to calculate efficient sediment-transport water volume after construction of the Xiaolangdi reservoir.


2011 ◽  
Vol 225-226 ◽  
pp. 1345-1349
Author(s):  
Jun Yan ◽  
Biao Liang ◽  
Hui Cao ◽  
Yu Hua Zhang

Analyzed the sediment-transport process in the Lower Yellow river, the concept and normal calculating method for sediment-transport water volume are proposed. Based on field data of sediment and water volume in the Lower Yellow River from 1950 to 2000, the sediment-transport water volume and unit sediment-transport water volume in LYR are calculated. Furthermore, BP model is set up to calculate the high efficient sediment-transport water volume in the Lower Yellow River. Compared the results of BP model with normal calculating method, BP model is confirmed for calculating the high efficient sediment-transport water volume in the Lower Yellow river.


2018 ◽  
Vol 6 (4) ◽  
pp. 989-1010 ◽  
Author(s):  
Chenge An ◽  
Andrew J. Moodie ◽  
Hongbo Ma ◽  
Xudong Fu ◽  
Yuanfeng Zhang ◽  
...  

Abstract. Sediment mass conservation is a key factor that constrains river morphodynamic processes. In most models of river morphodynamics, sediment mass conservation is described by the Exner equation, which may take various forms depending on the problem in question. One of the most widely used forms of the Exner equation is the flux-based formulation, in which the conservation of bed material is related to the stream-wise gradient of the sediment transport rate. An alternative form of the Exner equation, however, is the entrainment-based formulation, in which the conservation of bed material is related to the difference between the entrainment rate of bed sediment into suspension and the deposition rate of suspended sediment onto the bed. Here we represent the flux form in terms of the local capacity sediment transport rate and the entrainment form in terms of the local capacity entrainment rate. In the flux form, sediment transport is a function of local hydraulic conditions. However, the entrainment form does not require this constraint: only the rate of entrainment into suspension is in local equilibrium with hydraulic conditions, and the sediment transport rate itself may lag in space and time behind the changing flow conditions. In modeling the fine-grained lower Yellow River, it is usual to treat sediment conservation in terms of an entrainment (nonequilibrium) form rather than a flux (equilibrium) form, in consideration of the condition that fine-grained sediment may be entrained at one place but deposited only at some distant location downstream. However, the differences in prediction between the two formulations have not been comprehensively studied to date. Here we study this problem by comparing the results predicted by both the flux form and the entrainment form of the Exner equation under conditions simplified from the lower Yellow River (i.e., a significant reduction of sediment supply after the closure of the Xiaolangdi Dam). We use a one-dimensional morphodynamic model and sediment transport equations specifically adapted for the lower Yellow River. We find that in a treatment of a 200 km reach using a single characteristic bed sediment size, there is little difference between the two forms since the corresponding adaptation length is relatively small. However, a consideration of sediment mixtures shows that the two forms give very different patterns of grain sorting: clear kinematic waves occur in the flux form but are diffused out in the entrainment form. Both numerical simulation and mathematical analysis show that the morphodynamic processes predicted by the entrainment form are sensitive to sediment fall velocity. We suggest that the entrainment form of the Exner equation might be required when the sorting process of fine-grained sediment is studied, especially when considering relatively short timescales.


2018 ◽  
Vol 246 ◽  
pp. 01045
Author(s):  
Shimin Tian ◽  
Yi Zhao ◽  
Yuanjian Wang ◽  
Enhui Jiang ◽  
Shoubing Yu

The total water amount into the Yellow River estuary is significantly reduced with the construction of a series of reservoirs in the Yellow River, which has a lot of adversely effects on the fishes and fishery resources in the estuary. This research analyzes the impacts of the reservoirs on the runoff and discharge in the Lower Yellow River and the estuary, and pays more attention to the influences of the reduction of water amount on the estuarine ecology and fishes. As a large reservoir nearest to the estuary in the Lower Yellow River, the operation of Xiaolangdi Reservoir plays an important role on the ecological restoration of the lower reaches of the Yellow River and the estuary. Two ecological operation schemes are proposed based on the ecological demands of the estuarine fishes and the actual operation of the Xiaolangdi Reservoir in recent years. One scheme is proposed only on the basis of the estuarine ecological water demands and another scheme takes consideration of ecological water demands and the actual status of the water resources in the Lower Yellow River synthetically. Finally, the feasibility of the two schemes are analyzed according to the actual situation of water storage of the reservoirs in the Yellow River in 2017.


2018 ◽  
Author(s):  
Chenge An ◽  
Andrew J. Moodie ◽  
Hongbo Ma ◽  
Xudong Fu ◽  
Yuanfeng Zhang ◽  
...  

Abstract. Sediment mass conservation is a key factor that constrains river morphodynamic processes. In most models of river morphodynamics, sediment mass conservation is described by the Exner equation, which may take various forms depending on the problem in question. One of the most widely used forms of the Exner equation is the flux-based formulation, in which the conservation of bed material is related to the streamwise gradient of the sediment transport rate. An alternate form of the Exner equation, however, is the entrainment-based formulation, in which the conservation of bed material is related to the difference between the entrainment rate of bed sediment into suspension and the deposition rate of suspended sediment onto the bed. In the flux form, sediment transport is regarded to be in local equilibrium (i.e., sediment transport rate locally equals sediment transport capacity). However, the entrainment form does not require this constraint: the sediment transport rate may lag in space and time behind the changing flow conditions. In modeling the fine-grained Lower Yellow River, it is usual to treat sediment conservation in terms of an entrainment (nonequilibrium) form rather than a flux (equilibrium) form, in consideration of the condition that fine-grained sediment may be entrained at one place but deposited only at some distant location downstream. However, the differences in prediction between the two formulations have not been comprehensively studied to date. Here we study this problem by comparing the results of flux-based and entrainment-based morphodynamics under conditions typical of the Lower Yellow River, but simplified for clarity of comparison. We used sediment transport equations specifically designed for the Lower Yellow River. We find that in a treatment of a 200 km reach using a single characteristic bed sediment size, there is little difference between the two forms since the corresponding adaptation length is relatively small. However, a consideration of sediment mixtures shows that the two forms give very different patterns of grain sorting: clear kinematic waves occur in the flux form but are diffused out in the entrainment form. Both numerical simulation and mathematical analysis show that the morphodynamic processes predicted by the entrainment form are sensitive to sediment fall velocity.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 915 ◽  
Author(s):  
Tao Bai ◽  
Xia Liu ◽  
Yan-ping HA ◽  
Jian-xia Chang ◽  
Lian-zhou Wu ◽  
...  

Given the increasingly worsening ecology issues in the lower Yellow River, the Xiaolangdi reservoir is chosen as the regulation and control target, and the single and multi-objective operation by ecology and power generation in the lower Yellow River is studied in this paper. This paper first proposes the following three indicators: the ecological elasticity coefficient (f1), the power generation elasticity coefficient (f2), and the ecological power generation profit and loss ratio (k). This paper then conducts a multi-target single dispatching study on ecology and power generation in the lower Yellow River. A genetic algorithm (GA) and an improved non-dominated genetic algorithm (NSGA-II) combining constraint processing and feasible space search techniques were used to solve the single-objective model with the largest power generation and the multi-objective optimal scheduling model considering both ecology and power generation. The calculation results show that: (1) the effectiveness of the NSGA-Ⅱcombined with constraint processing and feasible spatial search technology in reservoir dispatching is verified by an example; (2) compared with the operation model of maximizing power generation, the power generation of the target model was reduced by 0.87%, the ecological guarantee rate was increased by 18.75%, and the degree of the impact of ecological targets on the operating results was quantified; (3) in each typical year, the solution spatial distribution and dimensions of the single-target and multi-target models of change are represented by the Pareto-front curve, and a multi-objective operation plan is generated for decision makers to choose; (4) the f1, f2, and k indicators are selected to analyze the sensitivity of the five multi-objective plans and to quantify the interaction between ecological targets and power generation targets. Ultimately, this paper discusses the conversion relationship and finally recommends the best equilibrium solution in the multi-objective global equilibrium solution set. The results provide a decision-making basis for the multi-objective dispatching of the Xiaolangdi reservoir and have important practical significance for further improving the ecological health of the lower Yellow River.


Sign in / Sign up

Export Citation Format

Share Document