Design of Dual Field of View and Zoom Infrared Optical System

2011 ◽  
Vol 403-408 ◽  
pp. 2919-2922
Author(s):  
Ying Chao Li ◽  
Yuan Jian Zhang

A dual field of view and zoom infrared optical system with uncooled infrared staring focal plane arrays is designed in this paper. The operating waveband of the system is 8~12μm, and zoom radio is 3×. The optical configuration is based on the axial motion of a lens group along the optical axis. Optical material used infrared monocrystalline silicon、Znse, In order to achieve high performance、high image quality, used two even aspheric surfaces in this system. The advantages of this system are the high imaging quality、small volume、light weight.

Author(s):  
Liping Yao ◽  
Danlei Zhu ◽  
Hailiang Liao ◽  
Sheik Haseena ◽  
Mahesh kumar Ravva ◽  
...  

Due to their advantages of low-cost, light-weight, and mechanical flexibility, much attention has been focused on pi-conjugated organic semiconductors. In the past decade, although many materials with high performance has...


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yehe Liu ◽  
Andrew M. Rollins ◽  
Richard M. Levenson ◽  
Farzad Fereidouni ◽  
Michael W. Jenkins

AbstractSmartphone microscopes can be useful tools for a broad range of imaging applications. This manuscript demonstrates the first practical implementation of Microscopy with Ultraviolet Surface Excitation (MUSE) in a compact smartphone microscope called Pocket MUSE, resulting in a remarkably effective design. Fabricated with parts from consumer electronics that are readily available at low cost, the small optical module attaches directly over the rear lens in a smartphone. It enables high-quality multichannel fluorescence microscopy with submicron resolution over a 10× equivalent field of view. In addition to the novel optical configuration, Pocket MUSE is compatible with a series of simple, portable, and user-friendly sample preparation strategies that can be directly implemented for various microscopy applications for point-of-care diagnostics, at-home health monitoring, plant biology, STEM education, environmental studies, etc.


2018 ◽  
Vol 57 (15) ◽  
pp. 4171 ◽  
Author(s):  
Shingo Kashima ◽  
Masashi Hazumi ◽  
Hiroaki Imada ◽  
Nobuhiko Katayama ◽  
Tomotake Matsumura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document