Finite Element Analysis of Tensile Modulus of X-Cor Sandwich

2011 ◽  
Vol 403-408 ◽  
pp. 3647-3651
Author(s):  
Xu Dan Dang ◽  
Shao Jie Shi ◽  
Jun Xiao

Through the analysis of micro-structures of Z-pin ends the basic hypothesis of elliptic configuration of the resin regions around Z-pin ends were proposed. The finite element model of the tensile modulus of X-cor sandwich was established and the finite element software ANSYS was used in the computation. The effects of Z-pin angle, diameter and density on the tensile modulus of X-cor sandwich were analyzed. Via the analysis of finite element model, the influencing trends of parameters of X-cor sandwich on the tensile modulus are achieved and the error range is ±10%. So the rationality of the proposed finite element model is verified and the finite element model can be used to forecast the tensile modulus of X-cor sandwich.

2011 ◽  
Vol 328-330 ◽  
pp. 1113-1117
Author(s):  
Xu Dan Dang ◽  
Shao Jie Shi ◽  
Jin San Jiang ◽  
Jun Xiao

Through the observation of photomicrographs of resin regions around Z-pin ends, the basic hypothesis of the elliptic configuration of resin regions in the X-cor sandwich were proposed. The parametric equations for describing the microscopic structures of resin regions were given. Then the geometric analysis model of X-cor sandwich was established. The finite element software ANSYS was used to establish the finite element model of the shear modulus and the shear modulus was calculated. The error range of finite element analysis is between ±10%. So the rationality of finite element model is verified and the finite element model can be used to forecast the shear modulus.


2014 ◽  
Vol 945-949 ◽  
pp. 1143-1149
Author(s):  
Hai Xia Sun ◽  
Hua Kai Wei ◽  
Xiao Fang Zhao ◽  
Jia Rui Qi

The finite element model of the concrete mixing truck’s frame is builded by using shell as basic element, and the process of building the finite element model of the balance suspension is introduced in detail. Based on this, frame’s stress on five types of typical operating conditions are calculated by using the finite element analysis software, NASTRAN, and results can show the dangerous position and the maximum stress position on the frame. The analysis result on structural strength can provide the basis for further improving the frame structure.


2015 ◽  
Vol 733 ◽  
pp. 591-594
Author(s):  
Yong Zhen Zhu ◽  
Kuo Yang ◽  
Qi Yang ◽  
Yun De Zhao

The CAD software was used to establish 3D model of frame of dump truck, and the finite element model was established through Hyper Mesh. The stress distributions of the frame in vertical accelerating, turning, twisting and climbing conditions were computed through finite element software when the dump truck was loaded 80t. The result is consistent with the actual situation of the frame, which proved that the approach of finite element analysis is feasible. And we proposed the improved method of the frame according to finite element results.


2011 ◽  
Vol 201-203 ◽  
pp. 253-256 ◽  
Author(s):  
Zhi Peng Lv ◽  
Si Zhu Zhou ◽  
Xiu Hua Ma

According to the plunger pump movement principle, this paper analyzed the two kind of typical force situation of the crosshead, and obtained the theoretical maximum force. Established the finite element model of the crosshead, gave an analysis to the load handling and boundary condition. The last results of the node stress and displacement show that the crosshead can work safely.


2013 ◽  
Vol 694-697 ◽  
pp. 194-197
Author(s):  
Li Juan Yu ◽  
Chang Ju Xu ◽  
Xue Cheng Zhang

In the test enginery, using reverse frame put the pulling force into the pressure is the most commonly structure method. This paper analyzed the buckling problem of the process of reverse frame working, established the finite element model , stability analyzed , putted forward and proved the critical condition of reverse frame in the course of stability, Verified in 10kN deadweight force standard machine.


Author(s):  
A. Bahtui ◽  
H. Bahai ◽  
G. Alfano

This paper presents a detailed finite element analysis of a five-layer unbonded flexible riser. The numerical results are compared analytical solutions for various load cases. In the finite element model all layers are modelled separately with contact interfaces placed between each layer. The finite element model includes the main features of the riser geometry with very little simplifying assumptions made. The numerical model was solved using a fully explicit time-integration scheme implemented in a parallel environment on a 16-processor cluster. The very good agreement found from numerical and analytical comparisons validates the use of our numerical model to provide benchmark solutions against which further detailed investigation will be made.


2014 ◽  
Vol 684 ◽  
pp. 341-346
Author(s):  
Heng Yi Yuan

The shaft as an important parts of automobile transmission system, in the process of the car have the effect of rotational speed and torque. Due to the structural characteristics of its low frequency, small stiffness, universal joint, such as the existence of the additional moment drive shaft inevitably exist when high speed vibration phenomenon. So the shaft vibration problems to deal with the vehicle ride comfort, comfort and dynamic performance has important significance. On the basis of the finite element software ANSYS, the physical design of drive shaft. Analyzes the mapping grid finite element model of transmission shaft, facilitate accurate transmission shaft strength calculation. Based on the inherent frequency and vibration model of finite element method to calculate transmission shaft, using experimental modal technology for modal analysis of the shaft, the test results verify the reliability of the finite element model. On this basis, the drive shaft assembly constraint modal finite element analysis, can be used as the basis of further research.


2013 ◽  
Vol 423-426 ◽  
pp. 978-983
Author(s):  
Xie Li

Springback is a common phenomenon in air bending of sheet metal forming, caused by the elastic redistribution of the internal stresses during unloading. It has been recognized that springback is essential for the design of the air bending. Traditionally, the values of springback is obtained for air bending parameters from handbook tables or springback graphs. However, the handbook tables or springback graphs are obtained using experiments and it is a time consuming processes. In this paper, a finite element model has been used to analyze the air bending process. Some experiments are carried out on ST12 materials, and the finite element model is validated comparing with experiments. In the present research the influence of process variables such as punch radius, die radius and die on springback are discussed using finite element analysis. Thus, the presented results of this research provide a basis of design to improve forming quality.


2016 ◽  
Vol 680 ◽  
pp. 72-75
Author(s):  
Yan Min ◽  
Zeng Chen Cao ◽  
Shuang Li

Based on GB/T 5137.1-2002 experiment specification, the finite element model of head-form impacting laminated glass for automotive windscreens is set up in this paper. According to Finite Element Analysis results of laminated glass with different structure and further analyzing impact property and mechanism of laminated glass , the influence rule of the structure of the laminated glass on the mechanical behavior is discussed. (H)


2014 ◽  
Vol 644-650 ◽  
pp. 659-662
Author(s):  
Hong An ◽  
Kun Wang ◽  
Chen Guang Liang ◽  
Yu Rui Guo

Create 3D entity model of the loader’s frame in Solidworks, assemble the frame and then import in ANSYS to get the finite element model of the frame, and use ANSYS to analysis the frame at 5 Static characteristics of different conditions. The analysis indicates that the design scheme of the frame is feasible, but need to increase the stiffness of the structure in some parts.


Sign in / Sign up

Export Citation Format

Share Document