Mechanical Properties and Fracture Characteristics of Ultra-Microduplex Structure in High Carbon Steel

2011 ◽  
Vol 415-417 ◽  
pp. 875-878
Author(s):  
Jian Ping Lu

The ultra-microduplex structure was fabricated in the high carbon steel with a fully pearlitic structure after severe plastic deformation. The sizes of ferrite grains and cementite particles were about 0.4 μm and 0.1~0.2 μm, respectively. The mechanical properties of the ultra-microduplex structure were investigated using mini-tensile tests and the morphologies of fracture surfaces were observed with scanning electron microscopy (SEM). The results show that the tensile strength of the ultra-microduplex structure and the lamellar pearlite are almost at the same level, but after warm deformation, the yield strength was obviously increased and correspondingly, the elongation and the reduction of area were 19.2%, 32.1%, respectively, which are markedly higher than those of the lamellar pearlite. The tensile fracture of the ultra-microduplex structure is typical ductile fracture, however the fracture of original lamellar pearlite appears a mixture of cleavage fractures and quasi cleavage fractures.

Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5059
Author(s):  
Michail Nikolaevich Brykov ◽  
Ivan Petryshynets ◽  
Miroslav Džupon ◽  
Yuriy Anatolievich Kalinin ◽  
Vasily Georgievich Efremenko ◽  
...  

The purpose of the research was to obtain an arc welded joint of a preliminary quenched high-carbon wear resistant steel without losing the structure that is previously obtained by heat treatment. 120Mn3Si2 steel was chosen for experiments due to its good resistance to mechanical wear. The fast cooling of welding joints in water was carried out right after welding. The major conclusion is that the soft austenitic layer appears in the vicinity of the fusion line as a result of the fast cooling of the welding joint. The microstructure of the heat affected zone of quenched 120Mn3Si2 steel after welding with rapid cooling in water consists of several subzones. The first one is a purely austenitic subzone, followed by austenite + martensite microstructure, and finally, an almost fully martensitic subzone. The rest of the heat affected zone is tempered material that is heated during welding below A1 critical temperature. ISO 4136 tensile tests were carried out for the welded joints of 120Mn3Si2 steel and 09Mn2Si low carbon steel (ASTM A516, DIN13Mn6 equivalent) after welding with fast cooling in water. The tests showed that welded joints are stronger than the quenched 120Mn3Si2 steel itself. The results of work can be used in industries where the severe mechanical wear of machine parts is a challenge.


2017 ◽  
Vol 118 (10) ◽  
pp. 1006-1014 ◽  
Author(s):  
E. S. Gorkunov ◽  
S. M. Zadvorkin ◽  
L. S. Goruleva ◽  
A. V. Makarov ◽  
N. L. Pecherkina

2018 ◽  
Vol 61 (4) ◽  
pp. 306-312
Author(s):  
M. V. Chukin ◽  
N. V. Koptseva ◽  
Yu. Yu. Efimova ◽  
D. M. Chukin ◽  
O. A. Nikitenko

Sign in / Sign up

Export Citation Format

Share Document