fine pearlite
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 11)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Lian Gong ◽  
Hui Liu ◽  
Cheng Lv ◽  
Lijun Zhao

A new welding method, ultranarrow gap welding with constrained arc by flux band, is proposed to compensate for the low quality of rail thermite welded joints. This article presents the results of research on the microstructure and mechanical properties of ultranarrow gap welded joints of U71Mn rail steel made using three types of alloying composition content flux bands. Results indicated that the base metal metallographic microstructure consisted mainly of pearlitic, the HAZ was mainly composed of fine pearlite, and the microstructure of the welded bead was composed of acicular ferrite, while the weld grain size decreased as the alloy composition increased. The average hardness noticeably changed in weld metal as the alloy composition increased, and when the alloy composition reached 19%, the hardness was equivalent to the base material. The average hardness value of the HAZ (35.8 HRC) was higher than that of the base metal (24.8 HRC). The tensile strength increased, and the percentage elongation after fracture decreased with increasing alloying composition from 9% to 19%. The impact absorbing energies were decreased as the alloying composition increased. Consequently, all the mechanical properties of rail ultranarrow gap welding were higher than those of the standard requirements of the rail flash welding. And the optimal alloying composition of flux band was 19%.


Author(s):  
Adityakumar Mishra ◽  
Sibnath Kayal

The present study is aimed to eliminate the undesirable microstructure in the real working condition of the steel unit. In this work, the microstructure of hot-rolled medium carbon steel (grade 45C8) is studied for application in the automotive industry. The effect of the temperature and rolling rate on the microstructure has been thoroughly investigated by analyzing the microstructure containing ferrite and pearlite phases after each trial run of hot-rolled steel. The desired microstructure of fine ferrite and pearlite is very much essential in hot-rolled medium carbon steel for better strength and uniform properties of the material. The formation of coarse pearlite is undesirable, which may lead to breakage during drawing and hardness variation in the hot-rolled steel. Therefore, this study is focused to find the optimum condition for achieving the microstructure containing uniform distribution of fine pearlite and ferrite without the presence of blocky pearlite patches.


Author(s):  
Praveen Singh ◽  
Satnam Singh

The aim of this work is to study the effect of various quenching media on the microstructural evolution and properties enhancement of AISI 4135 alloy steel. The formation of dual microstructures and their effect on mechanical and wear properties are investigated in this work. An attempt is made to correlate the microstructure-properties relation based on the quenching method used. Steel is heated above the austenitic temperatures (A3) and subsequently cooled down through various quenching media to obtain the variations in microstructures and related properties. The heat treated samples were investigated for microstructural evolution through optical microscopy and scanning electron microscope; mechanical characterization through microhardness study, tensile testing and impact testing; and wear characterization through pin on disc tribometer. It was observed that increased cooling rates increased the volume fraction of martensitic structures whereas oil quenching enhanced fine pearlite and bainite formation. The air cooling led to the formation of fine pearlite along with ferrite structures. Strength, hardness and wear resistance is favored with martensite formation but toughness decreases.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 219
Author(s):  
Jon Arruabarrena ◽  
Jose M. Rodriguez-Ibabe

The effect of the initial microstructure and soft annealing temperature on cementite spheroidization and microstructure softening is studied on an AISI 5140 hot-rolled wire. In coarse pearlite microstructure (λ: 0.27 μm), the cementite spheroidization progresses slowly under subcritical treatment, and the microstructure does not achieve the minimum G2/L2 IFI rating defined in the ASTM F2282 to be used in cold forming operations under any of the annealing treatment studies. Fine pearlite (λ: 0.10 μm) and upper bainite microstructures are more prone to spheroidization, and the minimum G2/L2 IFI rating is achieved under subcritical annealing at 720 °C for 6 h. Independent of the initial microstructure, even in the case of martensite, low hardness values within 165–195 HV are attained after imposing a 10 h long treatment at 720 °C. Annealing treatments conducted at 660 °C and 600 °C on pearlitic microstructures give rise to very poor softening. The G2/L2 rating is not achieved in any of the treatments applied at these two temperatures in this study. In pearlitic microstructures, the spheroidization progresses according to a fault migration mechanism, enhanced by the presence of defects such as lamella terminations, holes, and kinks. In the upper bainite, the row-like disposition of the cementite along the ferrite lath interface provides necks where dissolution and consequent lamellae break-up take place quickly under annealing.


2021 ◽  
Vol 8 (5) ◽  
pp. 836-851
Author(s):  
Hiremath Pavan ◽  
◽  
M. C. Gowrishankar ◽  
Shettar Manjunath ◽  
Sharma Sathyashankara ◽  
...  

<abstract> <p>Steel is a versatile metal, got a wide range of applications in all the fields of engineering and technology. Generally, low carbon steels are tough and high alloy carbon steels are hard in nature. Certain applications demand both properties in the same steel. Carburization is one such technique that develops hard and wear resistant surfaces with a soft core. The objective of this work is to study the influence of post carburizing treatment (normalizing) on three grades of steels (EN 3, 20MnCr5, and EN 353). Post carburizing treatments are necessary to overcome the adverse effects of carburization alone. Here carburization was carried out in the propane atmosphere by heating the gas carburizing furnace to 930 ℃ for more than a day. Normalizing was carried out at 870 ℃ for 1 h and cooled in air. Tensile, hardness, Charpy impact tests along with SEM (scanning electron microscopy) and EDAX (energy dispersive X-ray analysis) were conducted to analyze the phase transformation, failure mode analysis in all the samples. Carburized steels displayed the formation of ferrite, pearlite, and sometimes bainite phases in the core and complete coarse pearlite in the case regions, whereas in the post carburized steels, increased amount of ferrite, fine pearlite, and bainite in the core and fine pearlite with traces of bainite in the case region was observed. Normalizing also refines the grain with increased UTS (ultimate tensile strength), hardness, and impact resistance. EN 353 showed higher UTS among the steels with 898 MPa after carburization and 1370 MPa after normalizing treatment. Maximum hardness of 48 HRC was observed in 20MnCr5 and toughness was superior in EN 3 with energy absorbed during test i.e., 8 and 12 J before and after normalizing treatment. Based on the fracture surface analysis, in EN 353 steel, a finer array of dimples with voids and elongated bigger clustered dimples containing ultrafine dimples array are observed in the core and case respectively during carburizing whereas, more density of river pattern and cleavage failure (brittle) are observed in the core and case respectively after post carburizing (normalizing) treatment. There is a reduction in the ductility of the steels after post carburizing treatment. It was observed that normalizing treatment produces superior mechanical properties in the carburized steels by grain refinement and strong microstructures like bainite. Normalizing as post carburizing treatment can be recommended for engineering applications where ductile core and hard surface are of great importance.</p> </abstract>


2021 ◽  
Vol 63 (1) ◽  
pp. 48-54
Author(s):  
Ömer Faruk Murathan ◽  
Kemal Davut ◽  
Volkan Kilicli

Abstract In this study, the effect of austenitizing temperatures and low-temperature isothermal heat treatment (below martensite start temperature) on the microstructure and mechanical properties of AISI 9254 high silicon spring steel has been investigated. Experimental studies show that ultra-fine carbide-free bainite, tempered martensite and carbon enriched retained austenite could be observed in isothermally heat-treated samples where the as-received sample consisted of fine pearlite. A high tensile strength of ~2060 MPa, a total elongation of ~8 %, and absorbed energy of 105 J were achieved in a commercial high-Si steel by austempering below the Ms temperature. A good combination of strength and ductility has been obtained in prolonged austempering below the martensite start temperature (225 °C) from an austenitizing temperature of 870 °C.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1655
Author(s):  
Dan Dobrotă

Welded constructions are subject to high stresses during operation. One solution for improving the behavior in exploitation of welded constructions in various cases is to use the welding technique “temper bead welding” (TBW). In the paper, the optimization of the geometry of the welded joints by the TBW technique was performed. Thus, corner welded joints made of S355 steel were analyzed. To make the welded joints, three layers of welding seams were deposited, and the intermediate layers were processed through cutting with various radii. To analyze the influence of the size of these rays on the behavior of welded constructions, a research program based on factorial experiences was designed. The samples were tested in terms of fatigue behavior by applying loads between ±8 kN and ±12 kN. The research also focused on determining the hardness of the materials in the joints welded and on determining the microstructure of the materials in the heat affected zone (HAZ). Research has shown that it is possible to improve the characteristics of joints made by the TBW technique in the sense that it can be achieved an improvement in fatigue stress, a decrease in the hardness of the HAZ material and an improvement in the metallographic structure of the HAZ material, meaning that it has a structure made of ferrite and fine pearlite.


2020 ◽  
Vol 985 ◽  
pp. 137-146
Author(s):  
Le Thi Nhung ◽  
Pham Mai Khanh ◽  
Nguyen Duc Thang ◽  
Bui Sy Hoang

The influence of post weld heat treatments (PWHT) at 400°C, 600°C, 900°C on microstructures in heat affected zone (HAZ) of dissimilar welds between carbon steel and austenitic stainless steel was studied. As-welded condition, the fully Martensitic layer along the fusion line, Widmanstatten Ferrite, Bainite, Pearlite phases in the HAZ of carbon side and the fully austenitic zone in the weld metal can be observed. After PWHT, the microstructures of these zones were dramatically modified as a result of carbon diffusion from the carbon steel toward the weld metal. Decarburization of the base metal led to the formation of a zone with large Ferrite grains. Bainite or fine Pearlite were formed by carbon diffused to both the interfacial Martensite and the purely Austenite zone. The lowest hardness value in the decarburization zone was 92HV on average after PWHT at 900°C and the peak hardness value that was documented in the carburize zone with 366HV at 600°C. Carbides precipitation (M23C6, M7C3) were found in both the HAZ of carbon steel and austenitic stainless steel.


2019 ◽  
Vol 49 (4) ◽  
pp. 286-290
Author(s):  
N. V. Koptseva ◽  
Yu. Yu. Efimova ◽  
A. E. Gulin ◽  
K. Narasimyan ◽  
M. J. N. V. Prasad

2019 ◽  
Vol 754 ◽  
pp. 622-627 ◽  
Author(s):  
Vaibhav N. Khiratkar ◽  
Kushal Mishra ◽  
Polavarapu Srinivasulu ◽  
Aparna Singh

Sign in / Sign up

Export Citation Format

Share Document