Oil-Soluble DRA Development and Application

2012 ◽  
Vol 430-432 ◽  
pp. 2083-2086 ◽  
Author(s):  
Zheng Jun Long ◽  
Ya Rong Fu ◽  
Dong Qing Li ◽  
Yuan Hong Cai

To solve the single tube gathering process paraffin oil viscosity reduction shaft and gathering the problem of high back pressure. Technical application of crude oil pour point depressant, mixed ester, benzene, ethylene oxide such as octylphenol ether compound by an oil-soluble DRA. Dosage in the 50 ~ 100mg/l to meet the water when the wellbore is less than 25% of the wax viscosity and single-tube process requirements gathering, can be compared to the multi-port wells, monitoring data before and after dosing showed that the crude oil after dosing freezing point decreased 5.6 °C, the average rate of 87.4% viscosity reduction, the average rate of 91.5% paraffin. Pipeline wellhead back pressure reduced by 20 to 30 percentage points

Author(s):  
K.I. Matiev ◽  
◽  
A.M. Samedov ◽  
F.M. Akhmedov ◽  
◽  
...  

A pour point depressant additive has been developed to reduce the pour point of paraffinic oils. The depressant contains a (non-ionic) surfactant, a depressant component and a solvent. The depressor properties of the developed compositions have been studied. It has been established that while adding the compositions to the oil mixture, at a concentration of 0.02% wt. the pour point decreases from +31 oC to -3 - +7 оС, and at a concentration of 0.04% wt. up to -5- + 4 оС. Under the effect of the developed compositions the oil viscosity at + 35 оС decreases from 46.3 mPa·s to 22.1-27.7 mPa·s, and at + 40 °C - from 38.2 mPa·s to 16.6-21.6 mPa·s. Viscosity reduction performance at the indicated temperatures are 40.2-51.6% and 43.5-56.5%, respectively. Compositions 8, 14 and 17 exhibit higher depressor properties.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhenfu Ma ◽  
Kai Zhang ◽  
Mengjie Zhao ◽  
Lu Liu ◽  
Chao Zhong ◽  
...  

In view of the problems of low permeability, high oil viscosity and freezing point, and low productivity of single well in Luo 321 and Luo 36 blocks of Luojia Oilfield, the chemical viscosity-reducing cold production technology was studied. By analyzing the properties of crude oil, it is concluded that the reason for high viscosity and high freezing point is the high content of asphaltene, pectin, and wax. The viscosity is mainly affected by asphaltene; the wax precipitation point and pour point are mainly affected by the wax; and the solidification point is affected by the wax and asphaltene. The treatment idea of reducing viscosity and inhibiting wax is determined. By compounding the synthetic pour point depressant POA-VA and the viscosity reducer DBD-DOPAMA, the effect of reducing the viscosity and freezing point of crude oil was evaluated. PD-7 (POA-VA 40%, DBD-DOPAMA 50%, and P-10C 10%) system was selected as the optimal formula. When the concentration of the system is 10%, the viscosity reduction rate reaches 95.2%; the freezing point can reduce by 10.2°C; it has good oil sample adaptability, salinity resistance, and temperature resistance; and the oil washing rate can reach more than 60%. The oil displacement system was injected into the formation by means of multiconcentration and multislug and was applied in the field of Luo 321-2 Well. A total of 500 t of the oil displacement system was injected, and the effect of measures lasted for 400 days, with a cumulative oil increase of 883 t. It has been applied in different blocks 30 times and achieved a good field application effect.


Fuel ◽  
2010 ◽  
Vol 89 (5) ◽  
pp. 1095-1100 ◽  
Author(s):  
Shadi W. Hasan ◽  
Mamdouh T. Ghannam ◽  
Nabil Esmail

2011 ◽  
Vol 239-242 ◽  
pp. 2650-2654
Author(s):  
Fu Chen ◽  
Jie He ◽  
Ping Guo ◽  
Yuan Xu ◽  
Cheng Zhong

According to the mechanisms of carbon dioxide miscible flooding and previous researchers’ work on synthesis of CO2-soluble surfactant, Citric acid isoamyl ester was synthesized, and it’s oil solubility and the rate of viscosity reduction both in oil-water system and oil were evaluated. And then we found that this compound can solve in oil effectively; the optimum mass of Citric acid isoamyl ester introduced in oil-water system is 0.12g when the mass ratio of oil and water is 7:3 (crude oil 23.4g, formation water 10g) and the experimental temperature is 50°C , the rate of viscosity reduction is 47.2%; during the evaluation of the ability of Citric acid isoamyl ester to decrease oil viscosity, we found that the optimum dosage of this compound in 20g crude oil is 0.2g when the temperature is 40°C, and the rate of viscosity reduction is 7.37% at this point.


2012 ◽  
Vol 594-597 ◽  
pp. 2451-2454
Author(s):  
Feng Lan Zhao ◽  
Ji Rui Hou ◽  
Shi Jun Huang

CO2is inclined to dissolve in crude oil in the reservoir condition and accordingly bring the changes in the crude oil composition, which will induce asphaltene deposition and following formation damage. In this paper, core flooding device is applied to study the effect of asphaltene deposition on flooding efficiency. From the flooding results, dissolution of CO2into oil leads to recovery increase because of crude oil viscosity reduction. But precipitated asphaltene particles may plug the pores and throats, which will make the flooding effects worse. Under the same experimental condition and with equivalent crude oil viscosity, the recovery of oil with higher proportion of precipitated asphaltene was relatively lower during the CO2flooding, so the asphltene precipitation would affect CO2displacement efficiSubscript textency and total oil recovery to some extent. Combination of static diffusion and dynamic oil flooding would provide basic parameters for further study of the CO2flooding mechanism and theoretical evidence for design of CO2flooding programs and forecasting of asphaltene deposition.


2020 ◽  
Vol 38 (8) ◽  
pp. 651-658
Author(s):  
Gerardo Martínez-Narro ◽  
Cuauhtémoc Pozos-Vázquez ◽  
Alejandro Núñez-Delgado ◽  
Daniela Morán-Medellín ◽  
Virginia Elizabeth Lara-Zárate

2021 ◽  
Author(s):  
Claudia Meister ◽  
Liang Xu ◽  
Moin Muhammad

Abstract An improved flow assurance solution based on a new additive with robust performance, low treat rate and versatile handling properties was developed successfully. It was applied in a waxy crude oil from West Africa with high pour point and a wax content of about 24%. Crucial for the project success was a close collaboration among all involved stakeholders from operator, service company and chemical supplier. In the initial lab screening by the chemical supplier, tests focused on pour point, viscosity and yield stress. This approach allowed to identify the most efficient type of additive chemistry for the specific crude oil and to meet target performance requirements. Crude oil viscosity and yield stress under pipeline operation conditions could be reduced by more than 95% while reducing the required amount of additive by more than 75% compared to the incumbent solution. This resulted in significant cost savings for the operator and in a reduction of the Health, Safety and Environmental (HSE) exposure.


DYNA ◽  
2018 ◽  
Vol 85 (207) ◽  
pp. 153-160 ◽  
Author(s):  
Daniel Montes ◽  
Farid B. Cortés ◽  
Camilo A Franco

The objective of this study is to reduce heavy oil viscosity through the catalytic decomposition of heavy fractions by ultrasound cavitation using metal oxide nanoparticles and water as a hydrogen donor, leading to the reduction of asphaltene content through its conversion into lighter components. NiO nanoparticles were synthesized over a 7 nm silica support using the incipient wetness technique. Emulsified heavy oil (HO) with 40%v/v of water and 13°API was used to evaluate the ultrasound cavitation process over different exposure times and nanoparticle dosages. The viscosity of the emulsified HO before and after ultrasound cavitation was measured with and without nanoparticles. Significant viscosity reduction was obtained, showing best results at 90 minutes of ultrasound exposure time with a nanoparticle dosage of 2000 mg/L, leading to a viscosity reduction at 10 s-1 and 25°C, and an asphaltene content reduction of 44 and 16%, respectively.


Sign in / Sign up

Export Citation Format

Share Document