Influence of the Recycled Material Percentage on the Mechanical Behaviour of HDPE for Injection Moulding Process for an Ecologycal Design

2012 ◽  
Vol 445 ◽  
pp. 935-940 ◽  
Author(s):  
Carlos Javierre ◽  
Angel Fernandez ◽  
Victor Camanes

Nowadays plastic materials recycling aims most of the time to use the recycled material to manufacture products of less requirements than the original products, so the material is depreciated. It would be important to recycle plastic materials to use them for the same applications they were initially used. To make this possible it would be necessary to characterize the recycled material properties, design products taking into account that they are going to be produced with recycled material and to be able to recuperate the product at the end of its lifetime. An example of this designing philosophy is going to be presented in this work, applied to large trash containers produced withHDPE (RIGIDEX5740UA), where the product can be easily recovered at the end of its lifetime and also the amount of polymer material wasted during thermoplastic injection moulding is very high. Recycling mills convert parts into small pieces that are used as feed material for injection again, by mixing it in different percentages with raw material. This mixture of both raw and recycled material modifies material properties according to the percentage of recycled material introduced. Some of the properties affected by this modification are those related to mechanical behaviour. This paper analyzes the mechanical behaviour of material with different percentages of recycled material. Test parts have been injected with different percentage of recycled material and have been tested by a tensile machine. Results like; Stress at yield, Stress at break and Young Modulus have been calculated and analysed. The product of this work has been designed using only one plastic material, which is very helpful from the point of view of manufacturing and recycling.In these kinds of parts a very tight safety factor is used, thats why to know exactly material properties is very important during its design.

2014 ◽  
Vol 216 ◽  
pp. 322-325 ◽  
Author(s):  
Andrei Adam ◽  
Cristian Cosma ◽  
Adrian Ilie Dume ◽  
Sorin Jadaneantu

Processing by injection is the technological process by that the thermoplastics material is injected, under pressure, in the cavity of a mould, where it cools down and solidifies. This process is the most common method for obtaining plastic materials. Injection moulding of thermoplastics has emerged as the premier vehicle for delivering high quality, value added commercial products. Continued global competitiveness has increased standards for product capability and quality while requiring reduced product development time and unit cost. Despite advanced design methods and new process technologies, it is becoming apparent that the injection moulding process is neither flexible nor robust. This paper presents a design process using CAD-CAM software applied to an injection mould for manufacturing a plastic component that is used in the automotive industry. The component was analyzed, measured and subjected to simulations that will certify the quality of the final product.


2008 ◽  
Vol 587-588 ◽  
pp. 558-562 ◽  
Author(s):  
P.S. Alves ◽  
A.J. Pontes

During the injection moulding process, the material is subjected to successive transformations, being submitted to a thermo-mechanical environment that determines the final dimensions of the part. This environment is characterized by several parameters which are related to material properties, the mould design, equipment and process variables. As a result, deviations of the dimensions of the moulded parts from the dimensions of the cavity cannot be avoided. If differences on shrinkage occur, caused for example by anisotropies of the material or non-uniform cooling, distortions will happen. In order to predict this two effects on the injection cycles is require one strategy to monitoring and control the process variables. The aim is to achieve highest quality control of all manufacture parts. This paper presents the effect of different holding pressures and mould temperatures on shrinkage and warpage in two different materials, one amorphous (PC) and another semi crystalline (PP). An instrumented mould was manufactured. During the injection moulding process sensors signals were continuously monitored by a Data Acquisition System. The experimental results were compared with predictions made by commercial software.


2018 ◽  
Vol 8 (2) ◽  
Author(s):  
Hatta N.M ◽  
Azlan M.Z ◽  
Roselina Sallehuddin ◽  
Shayfull Z.

The injection moulding process in manufacturing plastic material has become a worldwide used for more than 100 years. The used can be seen everywhere instead of became a daily used product. The complexity of the process makes it difficult to handle but the big production makes it possible to happen. The entire process not just involve the difficult cycling process, but the involvement of the materials which pertaining many types of characteristic which considered to. Every big production need a quality production product with suitable cost and time efficiency. Eventhough, alongside the process, many defects can be detected by the physically seen marks. Many people especially from the expert’s field are trying to minimise as much as they can to reduce the defects so that the residual cost can be minimise. One of the way to overcome the problems is by simulation before the real product is being produce. The simulation is made by two classes of types which classical and non-classical method. Either both of the method gave good result but it still not reaches a perfect solution. In this study, the optimisation method of non-classical and classical are used to minimise the shrinkage defects at the thick plate part.


2013 ◽  
Vol 747 ◽  
pp. 571-574 ◽  
Author(s):  
Zulkifli Mohamad Ariff ◽  
T.H. Khang

The possibility of using Cadmould software to simulate the filling behaviour of a natural rubber compound during an injection moulding process was investigated. For the simulation process, the determination of required material input data involving the rheological and cure kinetics data of the designed rubber compound were conducted. It was discovered that the acquired data were able to function as reliable material input data as they were comparable with related data available in the Cadmould software materials database. Verification of the simulated filling profiles by experimental short shots specimens showed that the Cadmould Rubber Package was able to predict the realistic filling behaviour of the formulated natural rubber compound inside the mould cavity when the measured material data were utilized. Whereas, the usage of available material database from the software failed to model the mould filling progression of the intended natural rubber compound.


2013 ◽  
Vol 554-557 ◽  
pp. 1669-1682 ◽  
Author(s):  
Kam Hoe Yin ◽  
Hui Leng Choo ◽  
Dunant Halim ◽  
Chris Rudd

Process parameters optimisation has been identified as a potential approach to realise a greener injection moulding process. However, reduction in the process energy consumption does not necessarily imply a good part quality. An effective multi-response optimisation process can be demanding and often relies on extensive operational experience from human operators. Therefore, this research focuses on an attempt to develop a more user-friendly approach which could simultaneously deal with the requirements of energy efficiency and part quality. This research proposes a novel approach using a dynamic Shainin Design of Experiment (DOE) methodology to determine an optimal combination of process parameters used in the injection moulding process. The Shainin DOE method is adopted to pinpoint the most important factors on energy consumption and the targeted part quality whereas the ‘dynamic’ term refers to the signal-response system. The effectiveness of the proposed approach was illustrated by investigating the influence of various dominant parameters on the specific energy consumption (SEC) and the Charpy impact strength (CIS) of polypropylene (PP) material after being injection-moulded into impact test specimens. From the experimental results, barrel temperature was identified as the signal factor while mould temperature and cooling time were used as control factors in the full factorial experiments. Then, response function modelling (RFM) was built to characterise the signal-response relationship as a function of the control factors. Finally, RFM led to a trade-off solution where reducing part-to-part variation for CIS resulted in an increase of SEC. Therefore, the research outcomes have demonstrated that the proposed methodology can be practically applied at the factory shop floor to achieve different performance output targets specified by the customer or the manufacturer’s intent.


Sign in / Sign up

Export Citation Format

Share Document