Integration of CAD CAM Techniques in the Development of an Injection Mould for Automotive Parts

2014 ◽  
Vol 216 ◽  
pp. 322-325 ◽  
Author(s):  
Andrei Adam ◽  
Cristian Cosma ◽  
Adrian Ilie Dume ◽  
Sorin Jadaneantu

Processing by injection is the technological process by that the thermoplastics material is injected, under pressure, in the cavity of a mould, where it cools down and solidifies. This process is the most common method for obtaining plastic materials. Injection moulding of thermoplastics has emerged as the premier vehicle for delivering high quality, value added commercial products. Continued global competitiveness has increased standards for product capability and quality while requiring reduced product development time and unit cost. Despite advanced design methods and new process technologies, it is becoming apparent that the injection moulding process is neither flexible nor robust. This paper presents a design process using CAD-CAM software applied to an injection mould for manufacturing a plastic component that is used in the automotive industry. The component was analyzed, measured and subjected to simulations that will certify the quality of the final product.

2014 ◽  
Vol 555 ◽  
pp. 524-529 ◽  
Author(s):  
Andrei Adam ◽  
Cristian Cosma ◽  
Andrei Pop

Processing by injection is the technological process by that the thermoplastics material is injected, under pressure, in the cavity of a mould, where it cools down and solidifies. This process is the most common method for obtaining plastic materials. Injection moulding of thermoplastics has emerged as the premier vehicle for delivering high quality, value added commercial products. Continued global competitiveness has increased standards for product capability and quality while requiring reduced product development time and unit cost. Despite advanced design methods and new process technologies, it is becoming apparent that the injection moulding process is neither flexible nor robust. This paper presents a set of experiments that focused on particular processing conditions of injection through narrow section, thin-wall injection and microinjection. In these cases, the ultrasonic activation does not play an important role as single influence factor but could amplify or strengthen the influence of classical setting parameters of the process: mould temperature, injection pressure and temperature


2012 ◽  
Vol 445 ◽  
pp. 935-940 ◽  
Author(s):  
Carlos Javierre ◽  
Angel Fernandez ◽  
Victor Camanes

Nowadays plastic materials recycling aims most of the time to use the recycled material to manufacture products of less requirements than the original products, so the material is depreciated. It would be important to recycle plastic materials to use them for the same applications they were initially used. To make this possible it would be necessary to characterize the recycled material properties, design products taking into account that they are going to be produced with recycled material and to be able to recuperate the product at the end of its lifetime. An example of this designing philosophy is going to be presented in this work, applied to large trash containers produced withHDPE (RIGIDEX5740UA), where the product can be easily recovered at the end of its lifetime and also the amount of polymer material wasted during thermoplastic injection moulding is very high. Recycling mills convert parts into small pieces that are used as feed material for injection again, by mixing it in different percentages with raw material. This mixture of both raw and recycled material modifies material properties according to the percentage of recycled material introduced. Some of the properties affected by this modification are those related to mechanical behaviour. This paper analyzes the mechanical behaviour of material with different percentages of recycled material. Test parts have been injected with different percentage of recycled material and have been tested by a tensile machine. Results like; Stress at yield, Stress at break and Young Modulus have been calculated and analysed. The product of this work has been designed using only one plastic material, which is very helpful from the point of view of manufacturing and recycling.In these kinds of parts a very tight safety factor is used, thats why to know exactly material properties is very important during its design.


2020 ◽  
Vol 45 (7) ◽  
pp. 5285-5294
Author(s):  
Abdellah Abdellah El-Hadj ◽  
Shayfull Zamree Abd Rahim ◽  
Mohd Nasir Mat Saad ◽  
Chye Lih Tan

2013 ◽  
Vol 747 ◽  
pp. 571-574 ◽  
Author(s):  
Zulkifli Mohamad Ariff ◽  
T.H. Khang

The possibility of using Cadmould software to simulate the filling behaviour of a natural rubber compound during an injection moulding process was investigated. For the simulation process, the determination of required material input data involving the rheological and cure kinetics data of the designed rubber compound were conducted. It was discovered that the acquired data were able to function as reliable material input data as they were comparable with related data available in the Cadmould software materials database. Verification of the simulated filling profiles by experimental short shots specimens showed that the Cadmould Rubber Package was able to predict the realistic filling behaviour of the formulated natural rubber compound inside the mould cavity when the measured material data were utilized. Whereas, the usage of available material database from the software failed to model the mould filling progression of the intended natural rubber compound.


2013 ◽  
Vol 554-557 ◽  
pp. 1669-1682 ◽  
Author(s):  
Kam Hoe Yin ◽  
Hui Leng Choo ◽  
Dunant Halim ◽  
Chris Rudd

Process parameters optimisation has been identified as a potential approach to realise a greener injection moulding process. However, reduction in the process energy consumption does not necessarily imply a good part quality. An effective multi-response optimisation process can be demanding and often relies on extensive operational experience from human operators. Therefore, this research focuses on an attempt to develop a more user-friendly approach which could simultaneously deal with the requirements of energy efficiency and part quality. This research proposes a novel approach using a dynamic Shainin Design of Experiment (DOE) methodology to determine an optimal combination of process parameters used in the injection moulding process. The Shainin DOE method is adopted to pinpoint the most important factors on energy consumption and the targeted part quality whereas the ‘dynamic’ term refers to the signal-response system. The effectiveness of the proposed approach was illustrated by investigating the influence of various dominant parameters on the specific energy consumption (SEC) and the Charpy impact strength (CIS) of polypropylene (PP) material after being injection-moulded into impact test specimens. From the experimental results, barrel temperature was identified as the signal factor while mould temperature and cooling time were used as control factors in the full factorial experiments. Then, response function modelling (RFM) was built to characterise the signal-response relationship as a function of the control factors. Finally, RFM led to a trade-off solution where reducing part-to-part variation for CIS resulted in an increase of SEC. Therefore, the research outcomes have demonstrated that the proposed methodology can be practically applied at the factory shop floor to achieve different performance output targets specified by the customer or the manufacturer’s intent.


2011 ◽  
Author(s):  
Nong Gu. ◽  
Dougas Creighton ◽  
Saeid Nahavandi ◽  
Francisco Chinesta ◽  
Yvan Chastel ◽  
...  

Author(s):  
Thuy Linh Pham ◽  
Jean Balcaen ◽  
Sambor Chhay ◽  
Yves Bereaux ◽  
Jean-Yves Charmeau

In injection moulding or in extrusion, plastication is the step during which polymer pellets are melted by the means of mechanical dissipation provided by a rotating screw and by thermal conduction coming from a heated metallic barrel. This step is crucial for melt thermal homogeneity, charge dispersion and fibre length preservation. Although there have been a large number of theoretical and experimental studies of plastication during the past decades, mostly on extrusion and mostly using the screw extraction technique, extremely few of them have dealt with trying to visualise plastication, let alone measuring the plastication profile in real-time. As a matter of fact, designing such an equipment is an arduous task. We designed an industry-sized metallic barrel, featuring 3 optical glass windows; each window possessing 3 plane faces itself to allow for visualisation and record by synchronised cameras and lightening by lasers. The images recorded can be further analysed by digital image processing. Preliminary results confirm the plastication theory and show a compacted solid bed and a melt pool side by side. The total plastication length is a direct function of screw rotation frequency as it is obvious from results on the melt pool width, which increases when the screw rotation frequency decreases. However, some evidence of solid bed breakage has been recorded, whereby the solid bed does not diminish continuously along the screw but is fractured in the compression zone.


Sign in / Sign up

Export Citation Format

Share Document