Strain Mode Damage Detection in Reinforced Concrete Beams Application

2012 ◽  
Vol 446-449 ◽  
pp. 566-571
Author(s):  
Jia Quan Wu ◽  
Ji Yao ◽  
Hong Yan Li ◽  
Liang Cao ◽  
Kun Ma

This paper describes the strain mode damage detection theory and a three-dimensional reinforced concrete beams finite element model was built by finite element software. The different degree injury models tests were compared. Experiment’s results show that the first four natural frequencies of different degree injury models are small differences while the corresponding strain modes have a significant changed in damage location. The structure of the strain mode changes are still evident when structural damage occurred in the strain mode node.

Author(s):  
W. Stalin Alcívar ◽  
Néxar Josué Párraga Zambrano ◽  
Juan Carlos Vélez Chunga

  Para vigas de hormigón armado el confinamiento mediante el refuerzo transversal mejora su desempeño a flexión (acción simultánea de tracción y compresión), permitiendo mayor resistencia y como consecuencia mayores deformaciones, a la vez que incrementa la ductilidad del elemento, misma propiedad que relaciona la capacidad estructural en el rango elástico y plástico en función de los desplazamientos, todo esto resumido en la gráfica momento-curvatura (M-Φ). El presente trabajo muestra la comparación teórico-experimental del comportamiento a flexión de vigas de hormigón armado mediante la gráfica momento-curvatura, partiendo de una viga base con geometría estándar preestablecida, que se ensaya con una configuración de simple apoyo sometida a una fuerza puntual creciente en el centro de la luz que delimita su deformación. A partir de resultados de ensayos experimentales realizados en la Universidad Técnica de Manabí se genera la gráfica momento curvatura (M-Φ), misma que es confrontada con la obtenida a partir de softwares de elementos finitos y puesta en consideración en base a las teorías clásicas de la flexión del hormigón. En virtud de los resultados obtenidos a partir de la calibración de un modelo de elementos finitos con un porcentaje de error del 2,89% en función de los puntos de cedencia de la gráfica momento-curvatura entre el modelo experimental y el modelo de elementos finitos, se llega a la conclusión de que el elemento puesto en estudio sufre los mismos efectos de fallas (falla primaria: dúctil, falla secundaria: frágil) las cuales están determinadas por el comportamiento que adquiere la gráfica momento curvatura (M-Φ) en dependencia de las deformaciones de los materiales.   Palabras claves: Deformaciones, desplazamientos, gráfica momento curvatura, ensayos experimentales, elementos finitos, teorías clásicas.   Abstract— For reinforced concrete beams, confinement through transverse reinforcement improves their flexural performance (simultaneous action of tension and compression), allowing greater resistance and consequently greater deformations, while increasing the ductility of the element, the same property that relates to capacity. Structural in the elastic and plastic range as a function of the displacements, all this summarized in the moment-curvature graph (M-Φ). The present work shows the theoretical-experimental comparison of the bending behavior of reinforced concrete beams through the moment-curvature graph, starting from a base beam with pre-established standard geometry, which is tested with a simple support configuration subjected to an increasing point force in the center of the light that defines its deformation. From the results of experimental tests carried out at the Universidad Técnica de Manabí, the curvature moment graph (M-Φ) is generated, which is compared with that obtained from finite element software and taken into consideration based on classical theories. of concrete flexure. By virtue of the results obtained from the calibration of a finite element model with an error percentage of 2.89% as a function of the yield points of the moment-curvature graph between the experimental model and the finite element model , it is concluded that the element under study suffers the same failure effects (primary failure: ductile, secondary failure: brittle) which are determined by the behavior acquired by the curve moment graph (M-Φ) in dependence of the deformations of the materials. Index Terms: Strains, displacement, moment curvature graph, experimental essays, finite elements, classical theories.


2020 ◽  
Vol 23 (9) ◽  
pp. 1934-1947
Author(s):  
Dapeng Chen ◽  
Li Chen ◽  
Qin Fang ◽  
Yuzhou Zheng ◽  
Teng Pan

The bending behavior of reinforced concrete beams under uniform pressure is critical for the research of the blast-resistance performance of structural components under explosive loads. In this study, a bending test of five reinforced concrete beams with the dimensions of 200 mm (width) × 200 mm (depth) × 2500 mm (length) under uniform load produced by a specific cylinder-shaped rubber bag filled with air or water was conducted to investigate their flexural performances. An air bag load was applied to three of the reinforced concrete beams, a water bag load was applied to one reinforced concrete beam, and the remainder beam was subjected to the 4-point bending load. The experimental results highlighted that the air bag and water bag loading methods can be used to effectively apply uniform loads to reinforced concrete beams. Moreover, the stiffness of the air bag was improved by 123% in accordance with the initial pressure increases from 0.15 to 0.45 MPa. In addition, a finite element model of the test loading system was established using ABAQUS/Standard software. Moreover, the critical factors of the air bag loading method were analyzed using the numerical model. The calculated results were found to be in good agreement with the test data. The established finite element model can therefore be used to accurately simulate the action performances of the uniform loading technique using rubber bags filled with air or water.


2011 ◽  
Vol 147 ◽  
pp. 19-23
Author(s):  
Ashraf Mohamed Mahmoud

A finite element reinforced concrete model has been analyzed by the author with ANSYS 9 finite element program for both unstrengthened and CFRP-strengthened beams using concrete element model 25x25x25mm and discrete and smeared steel distribution with openings exist. The CFRP has been modeled using Solid46 element, which has orthotropic properties. The deflection results have been compared with an experimental and other finite element model which are performed by Mohamed [4], in which using 100x42.5x42.5 mm concrete element, smeared steel distribution with the same opening sizes, and modeling CFRP with ANSYS 5 finite element program using Link10 element which has a uniaxial properties. These results show that the author's model is much better than the Mohamed's [4] model comparing with the experimental one. A parametric study has been done on the proposed model for obtaining the maximum strains values for concrete and steel at failure loads, for different opening sizes and comparing them with the experimental one. This study show a good agreement between the proposed and experimental model results for strains values which indicate the efficiency of the proposed model for analyzing the unstrengthend and strengthened reinforced concrete beams.


2021 ◽  
Vol 16 (59) ◽  
pp. 62-77
Author(s):  
Mahmoud Madqour ◽  
Khalid Fawzi ◽  
Hilal Hassan

In this research, the finite element method is used to develop a numerical model to analyse the effect of the external strengthening of reinforced concrete beams by using carbon Fiber Reinforced Polymer (CFRP) sheets. A finite element model has been developed to investigate the behavior of RC beams strengthened with CFRP sheets by testing nineteen externally simple R.C. beams, tested under a four-point load setup until failure. Various CFRP systems were used to strengthen the specimens.  The numerical results using the (ANSYS workbench v.19.1) were calibrated and validated with the experimental results.  The research results indicate a significant improvement in the structural behavior of the specimens strengthened using CFRP sheet systems. Then the validated model investigated the effect of the width of CFRP sheets, no of layers, and CFRP size on the behavior of strengthened R.C. beams. Results of this numerical investigation show the effectiveness of increase CFRP width to improve the flexural capacity of R.C. beams. An increase in the flexural capacity up to 100 % compared to the control beam.


2017 ◽  
Vol 3 (2) ◽  
pp. 111-123 ◽  
Author(s):  
Mohammed A Sakr

Numerous studies of the response of reinforced concrete members under cyclic loadings, many of which have been summarized and have indicated that, in general, the flexural strength of under-reinforced beams remains unimpaired under cyclic loadings consisting of a reasonable number of cycles. However, there is a body of evidence indicating that their shear strength may suffer under such loadings. The first objective of the current study is to construct an accurate 2D shell finite element model of reinforced concrete beams under cyclic loadings. The second objective is carrying out a parametric study on reinforced concrete beams, using the suggested 2D shell model.  The objective of this study was to observe the effect of the stirrup spacing, steel-to-concrete bond properties on the performance of reinforced concrete beams under cyclic loadings. For this purpose, an efficient and accurate finite element model was established taking into account the compression and tensile softening introducing damage in the concrete material, the Baushinger effect using nonlinear isotropic/kinematic hardening in the steel and an adequate bond-slip law for the concrete–steel interface. The simulated results of numerical models were verified by experimental results available in literature in order to validate the proposed model, including hysteretic curves, failure modes, crack pattern and debonding failure mode. The model provided a strong tool for investigating the performances of reinforced concrete beam. The results showed that: Cyclic loadings may change the failure mode of the beam to bond failure even though it has sufficient bond length to resist static loadings. So that under cyclic loadings additional anchorage length must be taken, cyclic loadings also influence the ductility and peak load for beams fail in shear. All these topics are of the utmost importance to RC behaviour to be considered by construction codes.


2012 ◽  
Vol 446-449 ◽  
pp. 566-571
Author(s):  
Jia Quan Wu ◽  
Ji Yao ◽  
Hong Yan Li ◽  
Liang Cao ◽  
Kun Ma

Sign in / Sign up

Export Citation Format

Share Document