Study of Tool Trajectory in Incremental Forming

2012 ◽  
Vol 472-475 ◽  
pp. 1586-1591 ◽  
Author(s):  
S.H. Wu ◽  
Ana Reis ◽  
F.M. Andrade Pires ◽  
Abel D. Santos ◽  
A. Barata da Rocha

Single point incremental forming (SPIF) is an innovative flexible sheet metal forming process which can be used to produce complex shapes from various materials. Due to its flexibility, it attracts a more and more attention in the recent decades. Several studies show that besides the major operating parameters, namely feed rate, tool radius, and forming speed etc., tool path is also an important processing parameter to affect the final forming component. In view of that, the present paper studies the influence of tool paths on the work piece quality by the finite element method coupled with the Continuum Damage Mechanics (CDM) model. The formability of incremental forming in different tool paths is also analyzed.

2015 ◽  
Vol 809-810 ◽  
pp. 277-282
Author(s):  
Khalil Ibrahim Abass

The Single Point Incremental Forming Process (SPIF) is a forming technique of sheet material based on layered manufacturing principles. The forming tool is moved along the tool path while the edges of sheet material are clamped. The finished part is manufactured by the CNC machine. SPIF involves extensive plastic deformation and the description of the process is more complicated by highly nonlinear boundary conditions, namely contact and frictional effects have been accomplished. However, due to the complex nature of these models, numerical approaches dominated by the FEA are now in widespread use. The paper presents the data and main results of a study on effect of using cover blank in SPIF through FEA. The considered SPIF has been studied under certain process conditions referring to the test work piece, tool, etc., applying ANSYS 11.0. The results show that the simulation model can predict an ideal profile of processing track, spring back error of SPIF, the behavior of contact tool-work piece, the product accuracy by evaluation its thickness and strain distributions, the contact status and chattering among surface interface tool-work piece.


2009 ◽  
Vol 410-411 ◽  
pp. 391-400 ◽  
Author(s):  
Aldo Attanasio ◽  
Elisabetta Ceretti ◽  
Antonio Fiorentino ◽  
Luca Mazzoni ◽  
Claudio Giardini

This paper deals with Incremental Sheet Forming (ISF), a sheet metal forming process, that knew a wide development in the last years. It consists of a simple hemispherical tool that, moving along a defined path by means of either a CNC machine or a robot or a self designed device, locally deforms a metal sheet. A lot of experimental and simulative researches have been conducted in this field with different aims: to study the sheet formability and part feasibility as a function of the process parameters; to define models able to forecast the final sheet thickness as a function of the drawing angle and tool path strategy; to understand how the sheet deforms and how formability limits can be defined. Nowadays, a lot of these topics are still open. In this paper, the results obtained from an experimental campaign performed to study sheet formability and final part feasibility are reported. The ISF tests were conducted deforming FeP04 deep drawing steel sheet 0.8 mm thick and analyzing the influence of the tool path strategy and of the adopted ISF technique (Single Point Incremental Forming Vs. Two Points Incremental Forming). The part feasibility and formability were evaluated considering final sheet thickness, geometrical errors of the final part, maximum wall angle and depth at which the sheet breaks. Moreover, process forces measurements were carried out by means of a specific device developed by the Authors, allowing to obtain important information about the load acting on the deforming device and necessary for deforming sheet.


2007 ◽  
Vol 344 ◽  
pp. 559-566 ◽  
Author(s):  
A. Governale ◽  
A. Lo Franco ◽  
A. Panzeca ◽  
Livan Fratini ◽  
Fabrizio Micari

In the last decades the scenario of the industrial production is remarkably changed, since new market requirements have to be faced by the industries. The market, actually, more and more, asks for vary models and niches product. The necessity to intercept dynamically and to satisfy the demands for the market, driver of the innovation process, involves the necessity to reduce the Timeto- market introducing to new methodologies of engineering, like the 3D-prototyping, for the qualitative and structural analysis of the final component. For these reasons, at the beginning of the nineties, a new philosophy of sheet metal forming process begins to assert on the industrial scene, whose basic logic is to obtain the shape wished through the progressive action of a tool of simple shape. In this job the application of the simplest process of incremental process on an industrial detail - famous in international field like SPIF (Single Point Incremental Forming) - will be described. The process is intrinsically flexible, and therefore is adapted to the rapid prototyping. The cases are still least, notice in the scientific literature, in which the details of industrial interest have been developed by Incremental Forming process; for this reason, the subject of this job is focused on the evaluation of the possibility to obtain real components of the automotive industry through the SPIF process. The job has been carried out in the R&D laboratory of "Fontana Pietro S.p.A.”, leader in the field of die manufacturing and stamping of component of the automotive industry. In particular, two parts of automotive auto body of aluminium sheets have been considered. It has been lead an analysis of technological and process feasibility, optimizing tool path considering experiences to obtain a product/process for the production of auto body prototypes.


Author(s):  
Lingam Rakesh ◽  
Srivastava Amit ◽  
N. V. Reddy

Incremental sheet forming (ISF) is a flexible sheet metal forming process that enables forming of complex three-dimensional components by successive local deformations without using component-specific tooling. ISF is also regarded as a die-less manufacturing process in the absence of part-specific die. Geometric accuracy of formed components is inferior to that of their conventional counterparts. In single-point incremental forming (SPIF), the simplest variant of ISF, bending near component opening region is unavoidable due to lack of support. The bending in the component opening region can be reduced to a larger extent by another variant of ISF, namely, double-sided incremental forming (DSIF) in which a moving tool is used to support the sheet locally at the deformation zone. However, the overall geometry of formed components still has unacceptable deviation from the desired geometry. Experimental observation and literature indicate that the supporting tool loses contact with the sheet after forming certain depth. This work demonstrates a methodology to enhance geometric accuracy of formed components by compensating for tool and sheet deflections due to forming forces. Forming forces necessary to predict compensations are obtained using force equilibrium method along with thickness calculation methodology developed using overlap of deformation zone that occurs during forming (instead of using sine law). A number of examples are presented to show that the proposed methodology works for a variety of geometries (axisymmetric, varying wall angle, free-forms, features above and below initial sheet plane, and multiple features). Results indicate that there is significant improvement in accuracy of the components produced using compensated tool paths using DSIF, and support tool maintains contact with sheet throughout the forming process.


2011 ◽  
Vol 12 (3) ◽  
Author(s):  
Meftah Hrairi ◽  
Salah B. M. Echrif

Single Point Incremental Forming (SPIF) is a promising sheet-metal-forming process that permits the manufacturing of small to medium-sized batches of complex parts at low cost. It allows metal forming to work in the critical ‘necking-to-tearing' zone which results in a strong thinning before failure if the process is well designed. Moreover, the process is complex due to the number of variables involved. Thus, it is not possible to consider that the process has been well assessed; several remaining aspects need to be clarified. The objective of the present paper is to study some of these aspects, namely, the phenomenon of the wall thickness overstretch along depth and the effect of the tool path on the distribution of the wall thickness using finite element simulations.Abstrak: Pembentukan Tokokan Mata Tunggal (Single Point Incremental Forming (SPIF)) merupakan satu proses pembentukan kepingan logam yang membolehkan pembuatan dalam jumlah yang kecil hingga sederhana, bahagian-bahagian yang kompleks pada kos yang rendah. Jika proses ini direka dengan baik, kaedah ini membolehkan pembentukan logam yang baik terhasil. Jika tidak, semasa peringkat zon kritikal ‘perleheran-ke-pengoyakan' menyebabkan penipisan keterlaluan yang boleh menyebabkan logam tersebut rosak. Tambahan pula, proses ini agak kompleks, kerana ia melibatkan beberapa pemboleh ubah. Maka, walaupun proses ini telah dinilaikan seeloknya; masih terdapat beberapa aspek lain yang perlu diperjelaskan. Objektif kertas ini dibentangkan adalah untuk mengkaji beberapa aspek tertentu, seperti, ketebalan dinding regangan berlebihan di sepanjang kedalaman dan kesan tool path (beberapa siri posisi koordinat untuk menentukan pergerakan alatan memotong ketika operasi memesin) terhadap pengagihan ketebalan dinding menggunakan simulasi unsur terhingga.


2007 ◽  
Vol 344 ◽  
pp. 583-590 ◽  
Author(s):  
M. Skjoedt ◽  
M.H. Hancock ◽  
N. Bay

Single point incremental forming (SPIF) is a relatively new sheet forming process. A sheet is clamped in a rig and formed incrementally using a rotating single point tool in the form of a rod with a spherical end. The process is often performed on a CNC milling machine and the tool movement is programed using CAM software intended for surface milling. Often the function called profile milling or contour milling is applied. Using this milling function the tool only has a continuous feed rate in two directions X and Y, which is the plane of the undeformed sheet. The feed in the vertical Z direction is done in the same angular position in the XY plane along a line down the side of the work piece. This causes a scarring of the side and also results in a peak in the axial force when the tool is moved down. The present paper offers a solution to this problem. A dedicated program uses the coordinates from the profile milling code and converts them into a helical tool path with continuous feed in all three directions. Using the helical tool path the scarring is removed, the part is otherwise unchanged and a major disadvantage of using milling software for SPIF is removed. The solution is demonstrated by SPIF of three different geometries: a pyramid, a cone and a complex part.


2018 ◽  
Vol 783 ◽  
pp. 148-153
Author(s):  
Muhammad Sajjad ◽  
Jithin Ambarayil Joy ◽  
Dong Won Jung

Incremental sheet metal forming, is a non-conventional machining process which offers higher formability, flexibility and low cost of production than the traditional conventional forming process. Punch or tool used in this forming process consecutively forces the sheet to deform locally and ultimately gives the target profile. Various machining parameters, such as type of tool, tool path, tool size, feed rate and mechanical properties of sheet metal, like strength co-efficient, strain hardening index and ultimate tensile strength, effects the forming process and the formability of final product. In this research paper, Single Point Incremental Forming was simulated using Dassault system’s Abaqus 6.12-1 and results are obtained. Results of sheet profile and there change in thickness is investigated. For this paper, we simulated the process in abaqus. The tool diameter and rotational speed is find out for the production of parts through incremental forming. The simulation is done for two type of material with different mechanical properties. Various research papers were used to understand the process of incremental forming and its simulation.


2021 ◽  
Vol 343 ◽  
pp. 04007
Author(s):  
Mihai Popp ◽  
Gabriela Rusu ◽  
Sever-Gabriel Racz ◽  
Valentin Oleksik

Single point incremental forming is one of the most intensely researched die-less manufacturing process. This process implies the usage of a CNC equipment or a serial robot which deforms a sheet metal with the help of a relatively simple tool that follows an imposed toolpath. As every cold metal forming process, besides the many given advantages it has also some drawbacks. One big drawback in comparison with other cold metal forming processes is the low accuracy of the deformed parts. The aim of this research is to investigate the sheet metal bending mechanism through finite element method analysis. The results shows that the shape of the retaining rings has a big influence over the final geometrical accuracy of the parts manufactured through single point incremental forming.


Author(s):  
D. Suresh Kumar ◽  
N. Ethiraj

Incremental forming is a non-conventional metal forming process which is widely used to produce the customized parts especially in medical and aerospace industries. One of the challenges encountered in the single stage process is the maximum wall angle of the component that can be formed to a maximum possible depth without fracture. Many strategies have been tried by the researchers in the past to overcome this limitation. The aim of this research work is to investigate the effect of 5 stage incremental forming process in improving the formation of maximum wall angle to a possible height which is not possible in single stage incremental forming. Also, the different strain measurements are carried out to identify the region at which the fracture is likely to occur in the produced part. It is observed from single stage incremental forming process for a wall angle of 64, max. depth of 45mm is achieved in the part produced. The current 5 stage incremental forming process reached the max. height of 54 mm with a wall angle of 76 successfully. The maximum thickness strain of 75% is observed at a distance of 18mm from the bottom end of the flange of a formed component.


2012 ◽  
Vol 504-506 ◽  
pp. 877-882
Author(s):  
Dieter Kreimeier ◽  
Jun Hong Zhu ◽  
R. Laurischkat

With the use of two industrial robots, Roboforming is a dieless incremental forming process, which is developed by the Chair of Production Systems at the Ruhr-University of Bochum. Connected to a cooperating robot system, these two robots hold respectively a forming and a supporting tool. Suitable for rapid prototyping and manufacture of small batch sizes with low costs, this forming process is based on flexible shaping through the synchronous movement of two industrial robots. Different from other single point incremental forming (SPIF) methods, the supporting tool used here greatly increases the geometric accuracy and the limited draw angle. A new processing technology always needs the computer-aided planning and simulation, which could accelerate the whole process and also give users the possibility to analyse and improve the process. In this paper, the whole integrated process design is introduced. After the modelling of the target CAD geometry, a self-developed CAM solution is used to get both tools’ positions and orientations according to the points on the geometrical surface. Based on the different forming strategies used, the supporting tool can even be synchronously placed at different positions on the sheet backside. After the tool path planning, the paths are first inputted into a simulation environment, which is consistent with the settings in the pilot plant. The tool positions and each robot’s postures can be seen and validated during the simulation. Before the final forming experiment, the tool paths are also sent into another simulation model for the forming analysis with the use of FEM technology. With consideration of many real material properties like springback and the subsequent deformation, the formed CAD geometry from the simulation is compared with the target CAD geometry and the forming results can be forecasted.


Sign in / Sign up

Export Citation Format

Share Document