The Research on ODS Iron Powder by Sol-Gel Method

2012 ◽  
Vol 476-478 ◽  
pp. 1146-1149 ◽  
Author(s):  
Xiao Yu ◽  
Zhi Meng Guo ◽  
Jun Jie Hao ◽  
Wei Wei Yang

Oxide dispersion strengthened (ODS) ferritic steel which contains Y2O3 dispersion is one of the most promising candidates for fast neutron reactor cladding materials due to its excellent swelling resistance to neutron and superior creep resistance in high temperature. There are many ways to prepare ODS ferritic steel and the most commonly used method is mechanical alloying. However, ODS ferritic steel produced by the method of mechanical alloying is poor in the plasticity and impact property. Moreover, the anisotropies of structure and properties are obvious in the follow-up processing. In this paper, in order to reduce the cost, iron powder is used as raw material instead of ferritic steel powder. The complexing sol-gel method is adopted to prepare ODS iron-powder. There are many advantages of the sol-gel method such as the small size of disperse phase and the high uniformity. Besides, it is easy to control the conditions of reaction such as the water content, the bath temperature and the PH value. The gel-coated iron powder can be prepared under the appropriate environmental conditions. Then, we can obtain iron powder with Y2O3 dispersion after heating and reducing the gel-coated iron powder. By the spark plasma sintering(SPS), the ODS iron powder can be densified and we can observe the microstructure and test the performance. The results reveal the Y2O3 dispersion of ODS iron-powder by sol-gel method is uniform and the mechanical property is excellent.

2019 ◽  
Vol 8 (3) ◽  
pp. 232-238
Author(s):  
Sri Wardhani ◽  
◽  
Danar Purwonugroho ◽  
Deka Permatasari ◽  
Darjito Darjito ◽  
...  

Synthesis of alumina has been carried out by utilizing anodized waste as raw material. Anodized waste is a by-product of metal anodizing processes such as aluminium. This study aims to determine the effect of acidity (pH) and aging time on the mass of Al(OH)3 and the property of Al(OH)3 as well as Al2O3 that produced. Anodized waste was deposited into Al(OH)3 and then purified. Alumina synthesized by the sol-gel method with pH variations of 7, 8, 9, and 10 and aging times of 24, 48, and 72 hours. The Al(OH)3, which has been produced, was characterized by PSA and powder XRD spectrophotometer. The results showed that the synthesis of Al(OH)3 was influenced by pH and aging time. It affects the yield and particle size of Al(OH)3. The optimum condition of the synthesis was pH 7 and aging time of 24 hours with yield of 1.85 grams. Characterization by PSA at a current diameter of 90% indicate that higher pH value and longer aging time produces smaller particle size. Characterization by powder XRD shows that the Al(OH)3 has gibbsite crystal phase with d values of 3.360, 3.217, 2.252, 2.029, and 1.649 Å.


2015 ◽  
Vol 226 ◽  
pp. 224-230 ◽  
Author(s):  
P. Małecki ◽  
K. Kolman ◽  
J. Pigłowski ◽  
J. Kaleta ◽  
J. Krzak

NANO ◽  
2010 ◽  
Vol 05 (05) ◽  
pp. 279-285 ◽  
Author(s):  
M. H. IMANIEH ◽  
Y. VAHIDSHAD ◽  
P. NOURPOUR ◽  
S. SHAKESI ◽  
K. SHABANI

In this research, nanocrystalline titanium dioxide (TiO2) particles were prepared by a modified alkoxide technique under basic and acidic conditions at room temperatures. A simple method for preparing different morphology of TiO2has been developed. The reaction condition was used to control the crystalline size, phase and morphology of the TiO2nanostructures. In this process by adjusting the Rw(water to precursor ratio) and pH value the hydrolysis and condensation reactions were controlled. This led to the development of a new process to produce TiO2nanorod (for the first time by sol–gel method) at high pH value (basic) while the water content was sufficient whereas at low pH value (acidic) nanosphere TiO2were obtained. The powders were characterized by DTA, XRD, FE-SEM and UV–vis techniques and their physical properties were compared.


2016 ◽  
Vol 34 (2) ◽  
pp. 362-367 ◽  
Author(s):  
I. Yarici ◽  
M. Erol ◽  
E. Celik ◽  
Y. Ozturk

AbstractCerium substituted yttrium iron garnet (Ce0.2Y2.8Fe5O12; Ce-YIG) nanoparticles were produced via the sol-gel method from solutions of Ce-, Y- and Fe-based precursors, a solvent and a chelating agent. The solutions were dried at 200°C and heat treated at temperatures between 800 °C and 1400°C for 3 h in air. The effects of pH and annealing temperature on the structure, phase formation, magnetic properties and crystallite size were investigated. A cubic YIG phase was obtained for the sample annealed at 1400 °C. The presented results showed that the pH value of the starting solution affects the crystal size and consequently, the saturation magnetization.


2018 ◽  
Vol 24 (8) ◽  
pp. 5523-5526 ◽  
Author(s):  
B Shalini ◽  
A. Ruban Kumar ◽  
A. Mary Saral

Hydroxyapatite (HAp) is the most widely accepted biomaterial for the repair and reconstruction of bone tissue defects. The current study is based on HAp was synthesized using sol–gel method. The drug was loaded in presence and absence of gelatin with pure HAp. Precursors like calcium nitrate tetrahydrate and diammonium hydrogen orthophosphate were used and ammonia solution was added to maintain the pH value at 10.5 throughout the reaction. The synthesized HAp, drug loaded HAp and drug loaded HAp with gelatin were characterized using PXRD, FTIR, SEM, Drug loading, drug release studies. Results shows that the average crystallite size of the prepared HAp and drug loaded HAp with gelatin are 30 to 60 nm and 100 to 300 nm respectively was calculated using PXRD and morphology of pure HAp and drug loaded HAp with polymer was found using SEM. Drug loading and release percentage was calculated.


2011 ◽  
Vol 306-307 ◽  
pp. 865-868 ◽  
Author(s):  
Yun Long Deng ◽  
Yun Hui Sun ◽  
Du Xia Cao

Organic modified sol-gel glass with tetraethylorthosilicate (TEOS), methyl triethoxysilane (MTEOS) and vinyltriethoxysilane (VTEOS) as raw material, ethanol as solvent and nitric acid as catalytic agent have been prepared. The influence caused by the amount of catalytic agent, water and the ratio of TEOS/MTEOS or TEOS/VTEOS on properties of porosity has been investigated. The optimal ration of MHNO3/MTEOS and Mwater/MTEOS were obtained. The modification of sol-gel glass using organic groups results in some decrease of porosity.


2013 ◽  
Vol 721 ◽  
pp. 224-228
Author(s):  
Shun Li ◽  
Meng Jian Zhu ◽  
Meng Liu ◽  
Shu Xin Bai

The preparation of molybdenum coating on the SiC particles has been investigated with sol-gel method. The results show that SiC particles with molybdenum coating are gained after two-stage hydrogen reduction process, using ammonium molybdate tetrahydrate as raw material.


The green emitting phosphor based on manganese activated zinc silicate was successfully synthesized by the sol – gel method using hydrochloric acid. The suitable molar ratio of the initial components is Zn(CH3COO)2: MnSO4: TEOS = 1.98: 0.02: 1 corresponding to the product formula Zn1.98Mn0,02SiO4. The suitable pH value for the gelation is 3, ratio of water phase: ethanol phase = 1:1 and the product when calcining the obtained gel at 10000C for 60 minutes has highest luminescence intensity. The synthesized phosphor consists of Zn2SiO4 with rhombohedral structure and emits a green light at the 525 nm wavelength when excited by the 325 nm UV radiation. The produced sample has spherical form with the particles size being 100 nm.


2020 ◽  
Vol 1007 ◽  
pp. 47-51
Author(s):  
Huynh Tuyet Anh Le ◽  
Tuan Anh Nguyen ◽  
Ky Phuong Ha Huynh

Antibacterial materials based on nanotechnology have been attracted considerable attention by the scientific community. In this study, the sol-gel method was applied to prepare of antibacterial materials from tetra-n-butyl orthotitanate, zinc nitrate and ethylenediamine tetraacetic acid (EDTA) as a complexing agent. The effects of the synthesis conditions on the properties of the Ag/ZnTiO3 samples such as the calcination temperature, the calcination time, pH value and ethylene glycol volume, were investigated. The obtained materials were characterized by powder X-ray diffraction (XRD) and their antibacterial activity against Staphylococcus aureus (S. Aureus) was evaluated. The results showed that the optimum conditions for Ag/ZnTiO3 synthesis were: calcination temperature of 650°C, calcination time of 2 h, pH value of 4.5 and ethylene glycol volume of 4.5 mL.


Sign in / Sign up

Export Citation Format

Share Document