Design of Control System for Automotive CVT Based on ATmega164P MCU

2012 ◽  
Vol 479-481 ◽  
pp. 1897-1900
Author(s):  
Yue Cheng

Control system and some functional circuits of automotive CVT (Continuously Variable Transmission) based on ATmega164P single chip computer were introduced in this paper. Hydraulic system of the CVT was controlled according to the throttle position signal, oil pressure, rotating speed of the engine and transmission output speed etc. This system has achieved the clamping force control of the metal belt.

2011 ◽  
Vol 230-232 ◽  
pp. 334-338
Author(s):  
Lei Zhang ◽  
Xiao Ming Zhang ◽  
Xiu Ming Yang ◽  
Yan Liu

Due to the complexity of the car running condition, the differences of the subjective intention of the driver, and Continuously Variable Transmission control system itself existed nonlinear, time delay, interference, variable parameter factors, the traditional control arithmetic based on scale model is hard to meet the clutch control requirements. This article through to design the drive mechanism of the dry friction clutch on a new, without hydraulic pump, pure electronic control car continuously variable transmission, and analyze its mechanical properties and control target, the clutch control model was established, according to the fuzzy control theory, driving experience and developers’ technical experience, the corresponding fuzzy language rules were formed, and intelligent control of the clutch on the single-chip control system was realized. At present, the pure electronic control continuously variable transmission has been tested on the experimental bench and car operation, and has passed the inspection by the national vehicle quality supervision and inspection center (Chongqing) and the identification by China Machinery Industry Federation .


2012 ◽  
Vol 622-623 ◽  
pp. 1221-1225
Author(s):  
Ma Shu Yuan ◽  
Bdran Sameh ◽  
Saifullah Samo

As most of today’s a continuously variable transmission (CVT) adopt an electro-hydraulic control system, the role of electronically controlled solenoid valves play an important stature. This paper presents a dynamic modeling and simulation of CVT hydraulic system using Matlab-simulink package and analyzes the dynamic characteristics of the CVT hydraulic system in frequency domain.


2014 ◽  
Vol 663 ◽  
pp. 238-242
Author(s):  
Bambang Supriyo ◽  
Kamarul Baharin Tawi ◽  
Mohd Salman Che Kob ◽  
Izhariizmi Mazali ◽  
Yusrina Zainal Abidin

This paper introduces an electro-mechanical dual acting pulley continuously variable transmission (EMDAP CVT) system and presents a method of measuring belt-pulley clamping force indirectly using a DC motor current sensor. The EMDAP CVT mainly consists of two movable primary (input) and secondary (output) pulley sheaves connected by metal pushing V-belt. Two DC motor’s actuation systems adjust the CVT ratio. Additionally, the secondary actuation system controls belt-pulley clamping force by adjusting the flatness of the spring discs placed at the back of each secondary pulley sheave to keep the belt tight and prevent belt slip. Ideally, a force sensor is used to measure the belt-pulley clamping force however the use of force sensor inside transmission gearbox is not feasible due to high temperature and oily environment. A viable solution for indirectly measuring the clamping force using current sensor for DC motor is proposed. Since the DC motor actuates the movable pulleys to clamp the belt, the relationship between the DC motor current and belt-pulley clamping force can then be investigated experimentally. The results will give positive impact on precisely controlling belt-pulley clamping force of EMDAP CVT using current sensor which is relatively simpler and less expensive than force sensor.


Sign in / Sign up

Export Citation Format

Share Document