Phase Change Materials of Microcapsules Containing Paraffin

2012 ◽  
Vol 482-484 ◽  
pp. 1596-1599
Author(s):  
Dian Wu Huang ◽  
Hong Mei Wang

In this study, phase change microcapsules were prepared by in situ polymerization using paraffin as core material, poly(MMA -co- MAA) as shell material, Tween60/span60 as emulsifier. The surface morphology, thermal properties and particle size distribution of the prepared microcapsules were investigated by using SEM, TGA, DSC and ELS. The effects of paraffin core content and amount of emulsifier on the properties of microcapsules were studied.

2012 ◽  
Vol 430-432 ◽  
pp. 647-650
Author(s):  
Dian Wu Huang ◽  
Yuan Lian ◽  
Hong Mei Wang

Microcapsules containing paraffin phase change materials with MMA-MAA copolymer shell were synthesised by in situ polymerization. The Structure, diameter, encapsulation ratio of paraffin and thermal properties of the prepared microcapsules were investigated by using FTIR, ELS particle size analyzer, differential scanning calorimeter (DSC), thermogravimetic analysis (TGA). This encapsulated phase change paraffin could have good potential for energy storage.


2012 ◽  
Vol 427 ◽  
pp. 45-50 ◽  
Author(s):  
Jun Feng Su ◽  
Sheng Bao Wang

Microencapsulated phase change materials (microPCMs) contain paraffin was fabricated by in-situ polymerization using methanol-modified melamine-formaldehyde (MMF) as shell material. The shell of microPCMs was sooth and compact with global shape, its thickness was not greatly affected by the core/shell ratio and emulsion stirring rate. More shell material in microPCMs could enhance the thermal stability and provide higher compact condition for core material. After a 100-times thermal cycling treatment, the microPCMs contain paraffin also nearly did not change the phase change behaviors of PCM. With the increasing of weight contents of microPCMs in gypsum board, the thermal conductivity (λ) values of composites had decreased. The simulation of temperature tests proved that the microPCMs/gypsum composite could store the time-dependent and intermittent solar energy, which did not necessarily meet the energy needs for space heating at all times.


2013 ◽  
Vol 815 ◽  
pp. 367-370 ◽  
Author(s):  
Xiao Qiu Song ◽  
Yue Xia Li ◽  
Jing Wen Wang

Hexadecane microcapsule phase change materials were prepared by the in-situ polymerization method using hexadecane as core materials, urea-formaldehyde resin and urea-formaldehyde resin modified with melamine as shell materials respectively. Effect of melamine on the properties of microcapsules was studied by FTIR, biomicroscopy (UBM), TGA and HPLC. The influences of system concentration, agitation speed and mass ratio of wall to core were also investigated. The results indicated that hexadecane was successfully coated by the two types of shell materials. The addition of melamine into the urea-formaldehyde resin microcapsule reduced microcapsule particle size and microencapsulation efficiency. The influences of factors such as system concentration, agitation speed and mass ratio of wall to core to different wall materials microcapsules presented different variety trends of the microcapsule particle size.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Chenzhen Liu ◽  
Ling Ma ◽  
Zhonghao Rao ◽  
Yimin Li

In this study, micro-encapsulated phase change material (microPCM) was successfully synthesized by emulsion polymerization method, using magnesium sulfate heptahydrate (MSH) as core material and urea resin (UR) as shell material. The surface morphologies and particle size distributions of the microPCM were tested by scanning electron microscopy (SEM) and laser particle size analyzer. The chemical structure of microPCM was analyzed by Fourier-transform infrared spectroscopy (FTIR). The thermal properties were investigated by differential scanning calorimetry (DSC) and thermal conductivity coefficient instrument, respectively.


2014 ◽  
Vol 902 ◽  
pp. 52-57
Author(s):  
Jin Hua Zhu ◽  
Qing Zhen Wen ◽  
Chao Yu ◽  
Xiong Wei ◽  
Li Qing Zhou

With the adoption of surface modification method, microencapsulated phase change materials (MEPCM) with polyurea as wall materials, paraffin as core materials were successfully prepared. This paper made a research on the effect dosage of modifier might have on the content of microcapsule core materials. Findings indicated that the content of microcapsule core materials was relatively high as the dosage of modifier being core material 10 wt%. It was preliminarily proved that polyurea had been coated on the surface of paraffin particles by adopting Fourier Transform Infrared Spectrum (FTIR) to formulate the composition and structure of microcapsules. And the laser particle analysis declared that particle size distribution of microcapsules was narrow with average particle size of 389 μm. Thermo Gravimetric Analysis (TG) and Differential Scanning Calorimetry (DSC) were also employed to make a representation of the thermal properties of microcapsules, and it was shown that microcapsules were of wonderful phase change performance and thermal stability.


2014 ◽  
Vol 900 ◽  
pp. 233-237 ◽  
Author(s):  
Wu Sheng Luo ◽  
Sheng Fei Yu ◽  
Jie Min Zhou

In this paper, Microencapsulated paraffin/polyurea (PU) phase change materials were prepared through an interfacial polymerization method using composite paraffin with solid/liquid mass ratio 3:7 as core materials, 2,4 toluene diisocyanate and ethylenediamine as monomers, NP-10 as an emulsifier. It was investigated the effects of emulsion speed, the amount of emulsifier and polymerization temperature on the particle size and coating efficiency and storage-energy performance of microencapsulated paraffin / PU phase change materials. The results showed when the emulsion speed is 2000r/min and the amount of emulsifier to core material is 6% and the polymerization temperature is 70°C, Microencapsulated paraffin / PU phase change materials have better performance: the melting point of 28.1°C, the enthalpy of 58.4KJ/Kg, coating efficiency of 87.5%, the average particle size of 3~4μm, and the uniform particle size distribution.


2017 ◽  
Vol 41 (23) ◽  
pp. 14696-14707 ◽  
Author(s):  
Hong Zhang ◽  
Wei Li ◽  
Rui Huang ◽  
Ning Wang ◽  
Jianping Wang ◽  
...  

Micronencapsulated bio-based n-dodcanol as phase change materials by in situ polymerization.


2018 ◽  
Vol 68 (2) ◽  
pp. 218 ◽  
Author(s):  
Kh. Gopal Krishna Singh ◽  
Sudipta Halder ◽  
Sukumar Pati ◽  
Jialai Wang

Microencapsulation of phase change materials (PCMs) with metallic shell materials is a very innovative and challenging task. This can mitigate the problems related to thermal barrier for conventional nonconductive shell materials as well as enhance mechanical properties of PCM microcapsules. Such microcapsules can be integrated into microelectronic devices for their intermittent thermal management in mission critical components. The present work is aimed at developing a new method to synthesise phase change material encapsulated with metallic shell material and characterising the same. Paraffin wax microspheres were first synthesised and then encapsulated with silver through in situ chemical reduction. Further more, a new set of experiments were identified to analyse the quality of encapsulation. The thermal properties were investigated under differential scanning calorimeter and thermogravimetric analyser. The average diameter of paraffin wax microspheres (PW) is found to be ±329 μm. It reveals from DSC analysis that the enthalpy of fusion is minimum for PW@Ag-PVA amongst all others. Accordingly, higher deposition of Ag is possible for PW@Ag-PVA. This is also supported by TGA results where PW@Ag-PVA has only 40 per cent mass loss and the remaining samples have 100 per cent. However, even for PW@Ag-PVA the encapsulation is found incomplete. The present work provides knowhow of the difficulties associated with encapsulation of PCMs with metallic shell material.<br /><br />


Sign in / Sign up

Export Citation Format

Share Document