Fast Prediction of Temperature by FEM in Hot Strip Rolling

2012 ◽  
Vol 482-484 ◽  
pp. 616-620
Author(s):  
Rui Bin Mei ◽  
Ban Cai ◽  
Chang Sheng Li ◽  
Xiang Hua Liu

Finite element method (FEM) has been one of the most important numerical simulation tools with the development of computer technology. However, it is only used to simulate and analyze different process offline in many fields because of the longer computational time. The influencing factors of prediction of temperature in the strip rolling by FEM including equations, mesh and storage of matrix was investigated in the paper. The lumped heat capacity matrix was introduced to resolve the oscillation problem and improve precision. Furthermore, the refined elements layer upon layer was discussed to improve solution efficiency and precision. In addition, in order to improve the solution efficiency one dimensional compressed storage method was employed to carry out in the solution of equations. The FEM program code for the solution of temperature was embed in the online rolling control system program successfully. The predictive results are in good agreement with the measured value. The computational time and precision are satisfied in the strip rolling process.

Author(s):  
Carlos Arturo Vega Lebrún ◽  
Rumualdo Servin Castañeda ◽  
Genoveva Rosano Ortega ◽  
Juan Manuel Lopez ◽  
José Luis Cendejas Valdéz ◽  
...  

2011 ◽  
Vol 704-705 ◽  
pp. 358-363
Author(s):  
Rui Bin Mei ◽  
Chang Sheng Li ◽  
Xiang Hua Liu ◽  
Li Bao

Rigid plastic finite element method (RPFEM) is one of the most efficient numerical methods during the rolling process. Realizing FEM online application has been main target for many researchers. The influence of compile method, elements number, compressible parameter, friction factor and convergent criteria were investigated and RPFEM model of fast solution to strip rolling was proposed in this work. Compile method and compressible parameter have less influence on calculated rolling force. However, the iteration steps are reduced and computational efficiency is improved greatly with compile method of release and compressible parameter 0.01. The change of calculated rolling force becomes less but iteration steps become more and more with the increment of elements number. Both accuracy and efficiency is satisfying with the change of elements number from 50 to 200. In addition, the typical rolling schedule from a certain plant has been solved with the developed program FFEM-2D by FORTRAN. The predicted rolling force has a good agreement with the measured value. The iteration steps change from 12 to 36 and computational time is less than 200(ms) with the model in one pass rolling. Therefore, the accuracy is satisfying and computational time fully meets the basic requirements of FEM online application. Keywords: Rolling; RPFEM; Fast solution; Computational time


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5054
Author(s):  
Kejun Hu ◽  
Qinghe Shi ◽  
Wenqin Han ◽  
Fuxian Zhu ◽  
Jufang Chen

An accurate prediction of temperature and stress evolution in work rolls is crucial to assess the service life of the work roll. In this paper, a finite element method (FEM) model with a deformable work roll and a meshed, rigid body considering complex thermal boundary conditions over the roll surface is proposed to assess the temperature and the thermal stress in work rolls during hot rolling and subsequent idling. After that, work rolls affected by the combined action of temperature gradient and rolling pressure are investigated by taking account of the hot strip. The accuracy of the proposed model is verified through comparison with the calculation results obtained from the mathematical model. The results show that thermal stress is dominant in the bite region of work rolls during hot rolling. Afterwards, the heat treatment residual stresses which are related to thermal fatigue are simulated and introduced into the work roll as the initial stress to evaluate the redistribution under the thermal cyclic loads during the hot rolling process. Results show that the residual stress significantly changed near the roll surface.


2010 ◽  
Vol 654-656 ◽  
pp. 62-65 ◽  
Author(s):  
Cheng Liang Miao ◽  
Guo Dong Zhang ◽  
Cheng Jia Shang

Compressive deformation behaviors of low carbon steels with different Nb contents were investigated in the temperature range 900oC to 1100oC and strain rates from 0.05s-1 to 2s-1 by single pass deformation. Multi-pass compressive deformation processes were also carried out to examine strain accumulation under different Nb contents. In single pass deformations, dynamic recrystallization (DRX) can be observed in the case of low strain rate and high temperature, and the higher Nb steel exhibits higher deformation activation energy (Qdef) and critical strain value (εc) for the onset of DRX. However during multi-pass compression process (interval time of 3-4s), the higher Nb steel has larger strain accumulation between passes, so it is easier for high Nb steel that DRX happens during hot strip rolling process, which starts at relative high rolling temperature.


Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 737 ◽  
Author(s):  
Rauch ◽  
Bzowski ◽  
Kuziak ◽  
Uranga ◽  
Gutierrez ◽  
...  

The paper presents the design and implementation of a computer system dedicated to the optimization of a hot strip rolling process. The software system proposed here involves the flexible integration of virtual models of various devices used in the process: furnace, descalers, rolling stands, accelerated cooling systems, and coiler. The user can configure an arbitrary sequence of operations and perform simulations for this sequence. The main idea of the system and its implementation details are described in the paper. Besides the computer science part, the material models describing the rolling parameters, microstructure evolution, phase transformations, and product properties are also presented. Effect of precipitation was accounted for various stages of the rolling cycle. Experimental tests were performed to generate data for identification of the models. These include plastometric tests, two-step compression tests, and dilatometric tests. Following this, physical simulations of rolling cycles were performed on Gleeble 3800 to supply data for the verification and validation of the models. Finally, case studies of modern industrial processes were performed, and the selected results are presented.


Sign in / Sign up

Export Citation Format

Share Document