Photocatalytic Degradation of Active Brilliant Red on TiO2/SiO2 Composite Catalysts

2012 ◽  
Vol 488-489 ◽  
pp. 221-225 ◽  
Author(s):  
Chun Hua Cao

TiO2/SiO2composite catalysts were prepared using two-step sol-gel method, with tetrabutyl titanate and tetraethyl orthosilicate as the main raw materials, and its photocatalytic properties for degradation of active brilliant red X-3B solution were researched throuth Ti:Si molar ratio, calcined temperature, initial concentration and photocatalyst dosage. The results indicate that the TiO2/SiO2composite catalysts prepared with Ti:Si molar ratio of 6, calcination at 500°C have the best photocatalytic activity, and the photocatalytic activity of the composite materials is higher than that of pure TiO2under the same conditions; moreover, it was found that degradation rate of active brilliant red X-3B solution increased with its lower initial concentration, and the optimum dosage of composite photocatalysts is 1.6g/L when the initial concentration of active brilliant red X-3B solution is 25mg/L.

2014 ◽  
Vol 906 ◽  
pp. 66-71
Author(s):  
Zhen Quan Li ◽  
Qiang Zhen ◽  
Ya Li Wang

High purity ZrSiO4 powder were synthesized using Si (C2H5O)4 and ZrOCl2·8H2O as raw materials by the sol-gel method, LiCl was added as mineralizer to promote crystallization of zircon. The influences of molar ratio of Zr:Si, calcined time and calcined temperature on the synthesis of ZrSiO4 powder were investigated. XRD, SEM and TEM were used to characterize the powders. It was found that when the molar ratio of Zr:Si was 1:1.2, the calcined temperature was 1600°C and the calcined time was 4h, the high purity ZrSiO4 ultrafine powder was obtained. The ZrSiO4 formation began at 1300°C and when the gel was calcined at 1600°Cfor 4 h, the formation rate of ZrSiO4 was up to 95%. SEM and TEM studies reveal a homogeneous product with particle sizes on the order of 0.1-1μm. The IR emissivity of ultrafine ZrSiO4 is 0.892 at the whole wavelength range, and that is up to 0.951 at the wavelength range of 8-14 μm.


2011 ◽  
Vol 84-85 ◽  
pp. 504-508
Author(s):  
Ai Yan ◽  
Wen Yan Huang ◽  
Yuan Cai Lv ◽  
Ming Hua Liu

SiO2/TiO2 photocatalyst was prepared by a sol-gel method applying tetrabutyl titanate as the precursor and cullets as the carrier. The optimal preparing conditions of the SiO2/TiO2 composite photocatalyst were optimized. The optimal conditions included 2:1 of the molar ratio of tetraethyl orthosilicate to tetrabutyl titanate, 3 load times, 600°C of calcinations temperature, 3 h of calcination time, 3 mL of the dosage of CH3COOH and 5:1 of the molar ratio of water to tetrabutyl titanate. The photodegradation percentage of methylene blue could reach 92.26% under the above optimal conditions. Moreover, after three times of the repeated use, the SiO2/TiO2 composite photocatalyst still had a relatively high catalytic activity and stability, and the recycle percentage of the photocatalyst could reach 92.80%.


2013 ◽  
Vol 302 ◽  
pp. 176-181 ◽  
Author(s):  
Chun Hua Cao

TiO2/graphene oxide (TiO2/GO) nanocomposites were prepared by the sol-gel method using tetrabutyl titanate and graphite oxide as the main raw materials. The microstructure of TiO2/GO nanocomposites was analyzed by X-ray diffraction and transmission electron microscopy. The results showed that graphene oxide was uniformly covered with sphere-like anatase TiO2 nanoparticles, which had a diameter of about 10 nm. Reactive brilliant red X-3B (X-3B) was used as model pollutant to study the photocatalytic activity of the composites. The effect of key factors on X-3B degradation was investigated. The results indicated that the photocatalytic activity of TiO2/GO nanocomposites was higher than that of pure TiO2 and the mixture of TiO2 and graphite oxide under the same conditions, and the nanocomposites had the best photocatalytic activity, when the content of graphene oxide was 100 mg. Moreover, it was found that the rate of photocatalytic degradation decreased with the increase of the initial dye concentration, and the optimum amount of nanocomposites was 0.8g/L when the initial concentration of X-3B solution was 100 mg/L, and the degradation rate could reach 96% after 60 min irradiation.


2016 ◽  
Vol 16 (4) ◽  
pp. 4233-4238
Author(s):  
Qinglong Wang ◽  
Kexun Chen ◽  
Yali Zhang

The photocatalytic materials were prepared by sol–gel method: the main raw materials were tetrabutyltitanate and the lanthanum nitrate hexahydrate, bentonite was the carrier to support TiO2.The properties of the composites were characterized by specific surface area (BET), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermogravimetric analysis (TG). The photocatalytic degradation of cyanide waste water was used to assess the photocatalytic activity of the materials. The experimental results showed that the suitable content of lanthanum and roasted temperature could improve the photocatalytic activity. When the composites were roasted at 400 °C and the molar ratio of La to Ti was 1%, the photocatalyst reached optimal performance.


2013 ◽  
Vol 562-565 ◽  
pp. 858-863
Author(s):  
Lan Fang Yao ◽  
Xiong Tang ◽  
Xin Pei Yan ◽  
Lin Li

Pure TiO2, Nd3+doped TiO2 and Nd 3+-CTAB co-doped TiO2 nanometer thin films were prepared by the sol-gel technique with tetrabutyl titanate and neodymium nitrate as raw materials and surfactant cetyltrimethylammonium bromide (CTAB) as template. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-Visible absorbance spectroscopy (UV-Vis). The photocatalytic activity was evaluated by photocatalytic degradation of methyl orange. The results show that the all samples calcined at 500°C are all anatase, and there are slight red shifts of the Nd3+doped TiO2 and Nd3+-CTAB co-doped TiO2 films compared with pure TiO2 films and the red shift of Nd 3+-CTAB co-doped TiO2 is more obvious than that of Nd 3+ doped TiO2, which is beneficial to improve the photocatalytic efficiency. The1.0% Nd3+-CTAB co-doped TiO2 nanometer film calcined at 500°C had excellent photocatalytic efficiencies and the degradation rate of the film is more than 90% after 120 min.


2010 ◽  
Vol 152-153 ◽  
pp. 441-449 ◽  
Author(s):  
Wei Liu ◽  
Shi Fu Chen

P-N junction photocatalyst NiO/TiO2 photoexcited by visible light was prepared by sol-gel method using Ni(NO3)2•6H2O and tetrabutyl titanate [Ti(OC4H9)4] as the raw materials. The p-n junction photocatalyst NiO/TiO2 was characterized by UV-Vis diffuse reflection spectrum, fluorescence spectra (FL), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). UV-Vis spectrum showed that the absorption wavelength range of NiO/TiO2 is extended to the visible region, making it an effective photocatalyst photoexcited by visible light. This was demonstrated by photocatalytic reduction of Cr2O72- and photocatalytic oxidation of methyl orange (MO) under visible-light (λ>400 nm) irradiation. Doped-NiO effectively suppressed the phase transformation of anatase to rutile and the growth of titania crystallites. The optimum percentage of doped NiO is 0.5% (mole ratio of Ni/Ti). Effects of heat treatment on the photocatalytic activity of p-n junction photocatalyst NiO/TiO2 were investigated. The mechanisms of influence on the photocatalytic activity were also discussed by the p-n junction principle.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Liqin Wang ◽  
Xiujun Fu ◽  
Yang Han ◽  
E. Chang ◽  
Haitao Wu ◽  
...  

Nanoparticles of the TiO2/ZnO composite photocatalysts were prepared via sol-gel process. The crystalline structure, morphology, thermal stability, and pore structure properties of the composite photocatalysts were characterized by XRD, FE-SEM, TG-DTA, and N2physical adsorption measurements. The photocatalytic activity of the composite catalysts was evaluated by photocatalytic degradation reaction of methyl orange (MO) in aqueous solution. The best preparation parameters for the composite photocatalysts were obtained through systematical experiments. Furthermore, the photocatalytic degradation reaction of aqueous MO solution followed the first-order reaction kinetics; the relative equation can be described asln(C0/C)=0.5689t, and the calculated correlation constant (R2) is 0.9937 for the calibration curve.


2012 ◽  
Vol 518-523 ◽  
pp. 775-779 ◽  
Author(s):  
Dong Dong Tan ◽  
De Fu Bi ◽  
Peng Hui Shi ◽  
Shi Hong Xu

The TiO2/NiFe2O4 (TN) composite nanoparticles with different mass ratios of NiFe2O4 to TiO2 were prepared via sol-gel method. X-ray diffraction was used to characterize the phase structure of TN. The results indicated that adulterating a smidgen of NiFe2O4 into the TiO2 (about 0.1%) can promote the phase transformation of TiO2, however, when the doping amount of NiFe2O4 surpasses 1%, the introduction of NiFe2O4 can inhibit the growth of TiO2 crystal grain and reduce the size of TiO2 crystal grain. The degradation experiment of methyl orange solution under UV illumination (253.7 nm) showed that the content of NiFe2O4 in the TN was higher, the photocatalytic activity of TN was worse, and the 0.1% TiO2/NiFe2O4 calcined at 400 °C presented the best photocatalytic activity.


2019 ◽  
Vol 280 ◽  
pp. 03010 ◽  
Author(s):  
Dwi Rasy Mujiyanti ◽  
Muthia Elma ◽  
Mufidah Amalia

Interlayer-free glucose carbonized template silica membranesbased on tetraethyl orthosilicate (TEOS) and glucose were successfullyprepared using an acid-base catalysed sol-gel method for artificial brinewater desalination (7.5% wt NaCl solution %) at temperatures range from25, 40 and 60 °C. These membranes calcined at 250 and 400 °C. Themembranes were fabricated through sol-gel process by using TEOS(tetraethyl orthosilicate); ethanol; nitric acid; ammonia; aquadest andglucose as a template. By molar ratio is 1: 38: 0.0007: 0.0003: 5 and0.25%; 0.5%, 1% w/v glucose as template. The results show the highestwater fluxes of 1.8, 2.2 and 4.8 kg m−2 h−1 for 25, 40 and 60 °Cdesalination process with excellent salt rejections of 99.5, 99.5 and 99.7%, respectively. It was found that the higher the NaCl solution temperature asfeed solution as well as glucose concentration (0.25% to 1% wt) astemplate attached in the silica matrixes, the higher water fluxes eventhough the salt rejection remain the same. This study demonstrates that theorganosilica membranes offered the carbonized silica mesostructuremembranes with excellent separation of water from the hydrated salt ions, particularly for processing brine salt solutions.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Mathana Wongaree ◽  
Siriluk Chiarakorn ◽  
Surawut Chuangchote

Photocatalytic activity ofTiO2nanoparticles was successfully enhanced by addition of multiwall carbon nanotubes (MWCNT) to make CNT/TiO2nanocomposites by sol-gel method at ambient temperature. CNT treated by HNO3 : H2SO4treatment (1 : 3 v/v) was mixed withTiO2nanoparticles at various molar ratios and calcination temperatures. The optimal molar ratio of CNT : TiO2was found at 0.05 : 1 by weight. The optimal calcination condition was 400°C for 3 h. From the results, the photocatalytic activities of CNT/TiO2nanocomposites were determined by the decolorization of 1 × 10−5 M methylene blue (MB) under visible light. CNT/TiO2nanocomposites could enhance the photocatalytic activity and showed faster for the degradation of MB with only 90 min. The degradation efficiency of the MB solution with CNT/TiO2nanocomposite achieved 70% which was higher than that with pristineTiO2(22%). This could be explained that CNT preventsTiO2from its agglomeration which could further enhance electron transfer in the composites. In addition, CNT/TiO2nanocomposites had high specific surface area (202 m2/g) which is very promising for utilization as a photocatalyst for environmental applications.


Sign in / Sign up

Export Citation Format

Share Document