uv illumination
Recently Published Documents


TOTAL DOCUMENTS

507
(FIVE YEARS 136)

H-INDEX

36
(FIVE YEARS 7)

Author(s):  
Ashish Kumar ◽  
Arathy Varghese ◽  
Vijay Janyani

AbstractThis work presents the performance evaluation of Graphene/ZnO Schottky junctions grown on flexible indium tin oxide (ITO)-coated polyethylene terephthalate (PET) substrates. The fabricated structures include chemical vapour deposition grown graphene layer on ITO-coated PET substrates. Polymethyl methacrylate assisted transfer method has been employed for the successful transfer of graphene from Cu substrate to PET. The smaller D-band intensity (1350 cm−1) compared to G-band (1580 cm−1) indicates good quality of carbon lattice with less number of defects. High-quality ZnO has been deposited through RF sputtering. The deposited ZnO with grain size 50–95 nm exhibited dislocation densities of 1.31270 × 10–3 nm−2 and compressive nature with negative strain of − 1.43156 GPa. Further, the electrical and optical characterization of the devices has been done through device I–V characterization and UV detection analysis. The UV detection capability of the device has been carried out with the aid of a UV-lamp of 365 nm wavelength. The fabricated graphene/ZnO photodetector showed good response to UV illumination. The device performance analysis has been done through a comparison of the device responsivity and detectivity with the existing detectors. The detectivity and responsivity of the fabricated detectors were 7.106 × 109 mHz1/2 W−1 and 0.49 A W−1, respectively.


2021 ◽  
Author(s):  
Husam R. Abed ◽  
Ameer I. Khudadad ◽  
Fadhil Mahmood Oleiwi

Abstract In the present investigation, p-NiO has been deposited on n-Si (100) substrate by the spray pyrolysis method. The effect of the distance between the substrate and the nozzle on the structural, photoluminescence, and detection properties has been well inspected. XRD analysis proved the polycrystalline system with a cubic structure for NiO. The elemental analysis confirmed the existence of Ni, O, and Si materials without any impurities. The FESEM analysis showed nano and micro particles distributed on the Si layer, the micro particles have porous like structures which play a significant role as photons guider. The photoluminescence measurement depicted three main peaks at the UV and visible regions of the electromagnetic spectrum which are related to near band edge emission and defects within the crystal, respectively. I-V characteristics revealed good conductivity under UV illumination, and the highest current was recorded by a sample when the distance between the nozzle and the substrate is 25 cm. The responsivity elucidated a high value at UV region with 6.5 mA/W, and the current-time properties demonstrated good reproducibility, high stability and photoresponse, and rapid response and recovery times of 0.375 and 0.791 s, respectively at a lower bias voltage of 1.5 Volt under UV photons source.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3381
Author(s):  
Yong Ho Choi ◽  
Moon-Ju Kim ◽  
Jia Lee ◽  
Jae-Chul Pyun ◽  
Dahl-Young Khang

Reusable, antibacterial, and photocatalytic isoporous through-hole air filtration membranes have been demonstrated based on hydrothermally grown ZnO nanorods (NRs). High-temperature (300~375 °C) stability of thermoset-based isoporous through-hole membranes has enabled concurrent control of porosity and seed formation via high-temperature annealing of the membranes. The following hydrothermal growth has led to densely populated ZnO NRs on both the membrane surface and pore sidewall. Thanks to the nanofibrous shape of the grown ZnO NRs on the pore sidewall, the membrane filters have shown a high (>97%) filtration efficiency for PM2.5 with a rather low-pressure (~80 Pa) drop. The membrane filters could easily be cleaned and reused many times by simple spray cleaning with a water/ethanol mixture solution. Further, the grown ZnO NRs have also endowed excellent bactericidal performance for both Gram-positive S. aureus and Gram-negative S. enteritidis bacteria. Owing to the wide bandgap semiconductor nature of ZnO NRs, organic decomposition by photocatalytic activity under UV illumination has been successfully demonstrated. The reusable, multifunctional membrane filters can find wide applications in air filtration and purification.


ACS Sensors ◽  
2021 ◽  
Author(s):  
Jaewoo Park ◽  
Ranjana Rautela ◽  
Natalia Alzate-Carvajal ◽  
Samantha Scarfe ◽  
Lukas Scarfe ◽  
...  

Author(s):  
Johji NISHIO ◽  
Chiharu Ota ◽  
Ryosuke Iijima

Abstract Structural analysis is carried out of a single Shockley stacking fault (1SSF) that terminates near the substrate/epilayer interface and originally expanded from a basal plane dislocation segment near the epilayer surface of 4H-SiC. The characteristic zigzag structure is found for the partial dislocations (PDs), with microscopic connecting angles of almost 120°. It has been suggested that the microscopic construction of PDs might be limited by the Peierls valley. The termination line near the substrate/epilayer interface was found to have 30° Si-core and 90° Si-core PDs. This combination is the same as that found near the surface of the epilayer in commonly observed 1SSFs. Penetrating BPDs of this kind were also found experimentally for the first time. For the currently proposed charts for the 1SSF expansions, photoluminescence imaging during UV illumination is one of the nondestructive analysis methods that can provide the structural information and expected expansion shapes of the 1SSFs.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6731
Author(s):  
Haruki Inoue ◽  
Yuga Yamashita ◽  
Yoshiki Ozawa ◽  
Toshikazu Ono ◽  
Masaaki Abe

Two hexanuclear paddlewheel-like clusters appending six carboxylic-acid pendants have been isolated with the inclusion of polar solvent guests: [Cu6(Hmna)6]·7DMF (1·7DMF) and [Ag6(Hmna)6]·8DMSO (2·8DMSO), where H2mna = 2-mercaptonicotininc acid, DMF = N,N’-dimethylformamide, and DMSO = dimethyl sulfoxide. The solvated clusters, together with their fully desolvated forms 1 and 2, have been characterized by FTIR, UV–Vis diffuse reflectance spectroscopy, TG-DTA analysis, and DFT calculations. Crystal structures of two solvated clusters 1·7DMF and 2·8DMSO have been unambiguously determined by single-crystal X-ray diffraction analysis. Six carboxylic groups appended on the clusters trap solvent guests, DMF or DMSO, through H-bonds. As a result, alternately stacked lamellar architectures comprising of a paddlewheel cluster layer and H-bonded solvent layer are formed. Upon UV illumination (λex = 365 nm), the solvated hexasilver(I) cluster 2·8DMSO gives intense greenish-yellow photoluminescence in the solid state (λPL = 545 nm, ΦPL = 0.17 at 298 K), whereas the solvated hexacopper(I) cluster 1·7DMF displays PL in the near-IR region (λPL = 765 nm, ΦPL = 0.38 at 298 K). Upon complete desolvation, a substantial bleach in the PL intensity (ΦPL < 0.01) is observed. The desorption–sorption response was studied by the solid-state PL spectroscopy. Non-covalent interactions in the crystal including intermolecular H-bonds, CH···π interactions, and π···π stack were found to play decisive roles in the creation of the lamellar architectures, small-molecule trap-and-release behavior, and guest-induced luminescence enhancement.


2021 ◽  
Vol 10 (1) ◽  
pp. 10
Author(s):  
Sai Kiran Ayyala ◽  
James A. Covington

Enhancing the performance of a chemo-resistive gas sensor is often challenging due to environmental humidity influencing its sensitivity and baseline resistance. One of the most promising ways of overcoming this challenge is through ultraviolet (UV) illumination of the sensing material. Most research has focused on using UV with in-house developed sensors, which has limited their widespread use. In this work, we have evaluated if UV can enhance the performance of commercially available MOX-based gas sensors. The performance of five different MOX sensors has been evaluated, specifically SGX Microtech MiCS6814 (thin-film triple sensor), FIGARO TGS2620 (n-type thick film), and Alphasense VOC sensor (p-type thick film). These sensors were tested towards isobutylene gas under UV light at different wavelengths (UV-278 nm and UV-365 nm) to investigate its effect on humidity, sensitivity, baseline drift, and recovery time of each sensor. We found the response time of thin-film sensors for reducing gases was improved by 70 s under UV- 365 nm at normal operating temperatures. In addition, all the sensors were left in a dirty environment and the humid-gas testing was repeated. However, due to their robust design, the sensitivity and baseline drift of all the sensors remained the same. This indicates that UV has only limited uses with commercial gas sensors.


Sign in / Sign up

Export Citation Format

Share Document