Weight-Reduction Optimization Design for Milling Planer Bed Based on Finite Element Analysis

2012 ◽  
Vol 490-495 ◽  
pp. 2785-2789
Author(s):  
Dong Sun ◽  
Xu Dong Yang

The milling planer bed is one of the most important foundational parts for the entire machine, sufficient stiffness is required. The posterior segment of a certain milling planer bed is regarded as the optimization object in this paper. Three-dimensional modeling method is used to calculate the exact weight of the bed and then finite element analysis is used to research the static and dynamic characteristics before and after weight-reduction. The weak link of the bed is found out and a improvement scheme is put forward ensuring lower production costs under the premise of sufficient rigidity.

2020 ◽  
Vol 12 (12) ◽  
pp. 168781402097774
Author(s):  
Jiawei Wang ◽  
Fachao Li ◽  
Zibo Chen ◽  
Baishu Li ◽  
Jue Zhu

This paper studies the force and deformation of the connecting channel in Ningbo rail transit construction, which firstly used the mechanical shield method. Steel-concrete composite structural segments are used in the T-joint of connecting channel. The cutting part of the segments are replaced by the concrete and fiberglass instead of reinforced concrete. Basing on a variety of three-dimensional design software and ABAQUS finite element analysis software, a refined finite element analysis model of the special segments is established. By considering the influence of curved joint bolts, the force analysis of the special segments under the structural state before and after construction is performed. According to the analysis and comparison of the deformation of the segments with and without the bolts, it is concluded that the steel-concrete segments can withstand the pressure of the soil before and after the construction. Suggestions for the safety of the design and construction of the segments are put forward.


2014 ◽  
Vol 556-562 ◽  
pp. 1096-1099
Author(s):  
Wei Wei Tu ◽  
Han Li

This research is focused on Friction Type Monorail Crane Driving,using Solidworks software to establish three-dimensional model.Based on Ansys finite element analysis was introduced, the intensity and the structure optimization design. Monorail friction drive device is given in the stress analysis of different cross section.According to the result of the figure analyzes the stress of different locations will effect the performance of the drive.Provides a theoretical reference For optimizing the structure of improving driving devices and improving the performance of drive device.


2013 ◽  
Vol 710 ◽  
pp. 243-246
Author(s):  
Xian Hong Yang

The use of Pro/E and their respective advantages ANSYS software product design and engineering analysis to solve the case, first of all in the Pro/E, the completion of three-dimensional helical gear design, and then in the Pro/MECHANICA completed finite element model of helical gear, and then into ANSYS for finite element analysis of bevel gear calculation and simulation, finite element analysis of the final results of optimization design model is presented recommendations for improvement. The product design and engineering analysis method has some reference value in engineering design.


2012 ◽  
Vol 591-593 ◽  
pp. 841-844
Author(s):  
Ping Tang ◽  
Chun Hua Pan

Using the mechanical design of the software Solid works to established the 280 t LF the ladle furnace transportation car frame three dimensional model, and by using the finite element analysis of software Cosmos/works to static analysis for the frames, revealing that the frame of structure stress and strain distribution map of the frame, and also reveals that dangerous points and dangerous sections. Using resistance strain gauge to measure 280 t ladle transportation car frame, it is concluded that the frame of stress and strain distributions. Through the electrical measurement test the results were compared with finite element analysis results, further proof that the finite element analysis of the accuracy of the results provides theory basis for the optimization design of the frames.


2012 ◽  
Vol 241-244 ◽  
pp. 2125-2128 ◽  
Author(s):  
Zhao Hua Xu ◽  
Zhi Qin Cui ◽  
Xiao Hua Wang

This paper presents a new method for the analysis of the crankshaft strength by using the softwares of solidworks, matlab and ansys. Using the powerful modeling function of solidworks, the three-dimensional model of crankshaft was established. Applying the techniques of numerical operation, graph display and GUI of matlab, the simulation calculations of kinematics, dynamics of crankshaft was carried out and the force and torque of crankshaft was obtained. Making full use of finite element analysis function of ansys, the modal analysis and strength analysis of crankshaft were made. The results show that it is valid to take the respective advantages of solidworks, matlab and ansys to establish a simple and effective approach for the analysis of the crankshaft strength, which supplies foundation for the optimization design and dynamic response of crankshaft.


2011 ◽  
Vol 308-310 ◽  
pp. 513-516 ◽  
Author(s):  
Zhen Ning Hu

The heavy triangular rubber track conversion for the construction machinery has existed the disadvantage for weight oversized. The effective reduced triangular rubber track conversion's weight is essential in the engineering design. This article established one kind of triangular rubber track conversion driving gear wheel axle's three-dimensional model, integrated dynamics analysis has carried on the finite element analysis to it, based on this and carried on the size using Ansys Workbench to optimize for its most superior structure size, finally to optimized the result to carry on the finite element analysis once more. The result contrast indicated that at maintains under the wheel axle stress level basic invariable premise, after the optimized wheel axle weight reduces greatly, enhanced track wheel's performance effectively.


2012 ◽  
Vol 215-216 ◽  
pp. 78-81 ◽  
Author(s):  
Shu Ya Zhi ◽  
Hong Jun Liu

To model one bus body based on shell element and put it into the finite element analysis ANSYS made the mechanics analysis Using Pro/e software. Exert bending, reverse load, etc and done the operation and calibration. Through to adjust body structure balanced each part stress of the body. Analyzed data and put forward reasonable improvement scheme for restarting the optimization design. Got the purpose of the Body quality being light with high strength, the material effective utilization rate dramatically been improved.


Sign in / Sign up

Export Citation Format

Share Document