The Design and Finite Element Analysis for Crane Turntable Gear Based on Pro/E and ANSYS

2013 ◽  
Vol 710 ◽  
pp. 243-246
Author(s):  
Xian Hong Yang

The use of Pro/E and their respective advantages ANSYS software product design and engineering analysis to solve the case, first of all in the Pro/E, the completion of three-dimensional helical gear design, and then in the Pro/MECHANICA completed finite element model of helical gear, and then into ANSYS for finite element analysis of bevel gear calculation and simulation, finite element analysis of the final results of optimization design model is presented recommendations for improvement. The product design and engineering analysis method has some reference value in engineering design.

2015 ◽  
Vol 713-715 ◽  
pp. 15-17
Author(s):  
Xin Xiang Zhou ◽  
Tian Shu Cong ◽  
Xing Long Lei ◽  
Feng Zhen Yang

The finite element analysis was carried out on the piston of WWD - 0.8/10 type air compressor under the action of mechanical load stress and deformation.Using three-dimensional modeling software Solidworks to establish a simplified geometric model of piston in air compressor ,Transform the model built in the three dimensional finite element analysis software into the finite element model for analysis,Determine the method of the piston by the mechanical load and boundary conditions,Completed the stress analysis and deformation analysis of the piston under the mechanical load ,The results of analysis of the piston design optimization has important reference value.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1152
Author(s):  
Rafał Nowak ◽  
Anna Olejnik ◽  
Hanna Gerber ◽  
Roman Frątczak ◽  
Ewa Zawiślak

The aim of this study was to compare the reduced stresses according to Huber’s hypothesis and the displacement pattern in the region of the facial skeleton using a tooth- or bone-borne appliance in surgically assisted rapid maxillary expansion (SARME). In the current literature, the lack of updated reports about biomechanical effects in bone-borne appliances used in SARME is noticeable. Finite element analysis (FEA) was used for this study. Six facial skeleton models were created, five with various variants of osteotomy and one without osteotomy. Two different appliances for maxillary expansion were used for each model. The three-dimensional (3D) model of the facial skeleton was created on the basis of spiral computed tomography (CT) scans of a 32-year-old patient with maxillary constriction. The finite element model was built using ANSYS 15.0 software, in which the computations were carried out. Stress distributions and displacement values along the 3D axes were found for each osteotomy variant with the expansion of the tooth- and the bone-borne devices at a level of 0.5 mm. The investigation showed that in the case of a full osteotomy of the maxilla, as described by Bell and Epker in 1976, the method of fixing the appliance for maxillary expansion had no impact on the distribution of the reduced stresses according to Huber’s hypothesis in the facial skeleton. In the case of the bone-borne appliance, the load on the teeth, which may lead to periodontal and orthodontic complications, was eliminated. In the case of a full osteotomy of the maxilla, displacements in the buccolingual direction for all the variables of the bone-borne appliance were slightly bigger than for the tooth-borne appliance.


2012 ◽  
Vol 490-495 ◽  
pp. 2785-2789
Author(s):  
Dong Sun ◽  
Xu Dong Yang

The milling planer bed is one of the most important foundational parts for the entire machine, sufficient stiffness is required. The posterior segment of a certain milling planer bed is regarded as the optimization object in this paper. Three-dimensional modeling method is used to calculate the exact weight of the bed and then finite element analysis is used to research the static and dynamic characteristics before and after weight-reduction. The weak link of the bed is found out and a improvement scheme is put forward ensuring lower production costs under the premise of sufficient rigidity.


2013 ◽  
Vol 442 ◽  
pp. 229-232 ◽  
Author(s):  
Li Mei Wu ◽  
Fei Yang

According to the cutting theory of involute tooth profile, established an exact three-dimensional parametric model by UG. Used ABAQUS to crate finite element model for gear meshing. After simulated the meshing process, discussed the periodicity of the tooth surface contact stress. Based on the result of finite element analysis, made a comparison of the maximum contact stress between finite element solution and Hertz theoretical solution, analyzed the contact stress distribution on tooth width, and researched the effect of friction factor on contact stress. All that provided some theoretical basis for gear contact strength design.


2014 ◽  
Vol 556-562 ◽  
pp. 1096-1099
Author(s):  
Wei Wei Tu ◽  
Han Li

This research is focused on Friction Type Monorail Crane Driving,using Solidworks software to establish three-dimensional model.Based on Ansys finite element analysis was introduced, the intensity and the structure optimization design. Monorail friction drive device is given in the stress analysis of different cross section.According to the result of the figure analyzes the stress of different locations will effect the performance of the drive.Provides a theoretical reference For optimizing the structure of improving driving devices and improving the performance of drive device.


2018 ◽  
Vol 10 (6) ◽  
pp. 168781401877847 ◽  
Author(s):  
Daniela Maffiodo ◽  
Raffaella Sesana ◽  
Dino Paolucci ◽  
Sabrina Bertaggia

A procedure to design the spiral springs finite life for dual-mass flywheels is presented. Due to design constraints, installation space, production processes, stiffness requirement, maximum torque, and maximum speed, these components are dimensioned for finite life. Two- and three-dimensional finite element model static structural analysis was performed to obtain the stress distribution, deformed shape, and to validate optimization design. The fatigue analysis was performed both experimentally and by means of a component life estimation model. An experimental duty cycle was applied. Finite element analysis and experimental analysis agree in pointing out the location and the value of maximum stresses and the shape of deformation. Vehicle tests highlight premature spiral springs’ failures, which do not agree with life estimation. The examination of the fracture showed that fretting and wear, along with fatigue phenomena, are the causes of premature failures. A dedicated component life estimation model is required, taking into account of wear and loading history.


2012 ◽  
Vol 591-593 ◽  
pp. 841-844
Author(s):  
Ping Tang ◽  
Chun Hua Pan

Using the mechanical design of the software Solid works to established the 280 t LF the ladle furnace transportation car frame three dimensional model, and by using the finite element analysis of software Cosmos/works to static analysis for the frames, revealing that the frame of structure stress and strain distribution map of the frame, and also reveals that dangerous points and dangerous sections. Using resistance strain gauge to measure 280 t ladle transportation car frame, it is concluded that the frame of stress and strain distributions. Through the electrical measurement test the results were compared with finite element analysis results, further proof that the finite element analysis of the accuracy of the results provides theory basis for the optimization design of the frames.


2018 ◽  
Vol 10 (6) ◽  
pp. 168781401877525 ◽  
Author(s):  
Shangjun Ma ◽  
Chenhui Zhang ◽  
Tao Zhang ◽  
Geng Liu ◽  
Shumin Liu

In this article, 3D or three-dimensional finite element analysis is used to simulate and evaluate the load distribution characteristics of a planetary roller screw mechanism under thermo-mechanical coupling. The finite element model takes into account the installation modes of the planetary roller screw mechanism, which is verified by comparison with theoretical models for a certain load magnitude in four installation modes. In addition, the effects of the installation mode, load magnitude, and temperature condition on the load distribution are also systematically analyzed. The numerical results reveal a phenomenon of threads separating from the meshing, which indicates that the influence of thermo-mechanical coupling on the load distribution cannot be ignored. Furthermore, the influence of the installation mode on the screw–roller interface is larger than that on the nut–roller interface. Compared with the screw–roller interface, the temperature difference is one of the main conditions affecting the load distribution of the planetary roller screw mechanism and has a significant effect on the nut–roller interface. In addition, the influences of the screw rotational speed and the load magnitude on the load distribution on the screw–roller interface are larger than those on the nut–roller interface for the four installation modes.


2012 ◽  
Vol 184-185 ◽  
pp. 214-217
Author(s):  
Fei Xie ◽  
Jian Hua Wang ◽  
Yun Cheng Wang

On the basis of the analysis of special demand of helical gear of automotive transmission, gear precision modeling and finite element analysis of bending stress were carried out in this paper. In UG three-dimensional modeling environment, helical gear model was generated and imported into ANSYS software. Then the meshing on the geometric model and influence on gear strength with different radius of root fillet were discussed. The paper provided certain methods to guide the gear parametric design, strength analysis and improve optimization design efficiency of transmission gear parts.


Sign in / Sign up

Export Citation Format

Share Document