Study and Simulation of the Model about High-Speed Maglev Drive Needles

2012 ◽  
Vol 503-504 ◽  
pp. 1037-1040
Author(s):  
Xiao Guang Wu ◽  
Ling Xue Kong ◽  
Li Zhu ◽  
Jun Fu ◽  
Yi Min Yang

Based on the magnetic suspension theory, this paper has proposed a kind of suspension-type jacquard needle driving principle, and designed its 3-dimension model method. By making finite element analysis on suspension-type needles, analyzing the experimental data and designing the structure, we can get the relationship among related parameters under conditions of different permanent-magnet thickness and air gaps, which can provide criteria in theory and application for designing on new needle driving principle, control system and needle.

2012 ◽  
Vol 215-216 ◽  
pp. 46-49 ◽  
Author(s):  
Xiao Guang Wu ◽  
Li Zhu ◽  
Shuang Li ◽  
Yu Qin Wu ◽  
Chi Zhang ◽  
...  

Based on the magnetic suspension theory, this paper has proposed a kind of suspension-type jacquard needle driving principle, and designed its 3-dimension model method. By making finite element analysis on suspension-type needles, analyzing the experimental data and designing the structure, we can get the relationship among related parameters under conditions of different permanent-magnet thickness and air gaps, which can provide criteria in theory and application for designing on new needle driving principle, control system and needle.


2011 ◽  
Vol 317-319 ◽  
pp. 595-599
Author(s):  
Yu Xin Sun ◽  
Ling Ding ◽  
Tao Shi ◽  
Xian Xing Liu

According to magnetic suspension motorized spindle system, high speed motorized spindle system based on bearingless induction motor is presented in this paper. The prototype of high speed motorized spindle system with bearingless induction motor is studied and analyzed by using finite element analysis software Ansoft/Maxwell and Riccati transfer matrix method, and compared with high speed motorized spindle system supported by Active Magnetic Bearing (AMB). The results show that high speed motorized spindle system with bearingless induction motor has distinct advantage of simple and compact structure, which is easier to realize high speed and extra-high speed operation.


2012 ◽  
Vol 590 ◽  
pp. 385-390 ◽  
Author(s):  
Yu Huang ◽  
Shang Zhang ◽  
Yi Lin Liu ◽  
Bi Peng ◽  
Guo Jun Zhang

Conditions for changing acceleration and force spindle when the high-speed high-precision camshaft grinding with the action of follow grinding and the constant linear speed grinding,a step-pocket cavity hydrostatic -hydrodynamic bearings is designed to meet this precision camshaft grinding, and the relationship between eccentricity and bearing stiffness, load are analyzed by the method of finite-element analysis with fluid finite element analysis software.


2015 ◽  
Vol 764-765 ◽  
pp. 289-293
Author(s):  
Yi Chang Wu ◽  
Han Ting Hsu

This paper presents the magnetostatic field analysis of a coaxial magnetic gear device proposed by Atallah and Howe. The structural configuration and speed reduction ratio of this magnetic gear device are introduced. The 2-dimensional finite-element analysis (2-D FEA), conducted by applying commercial FEA software Ansoft/Maxwell, is performed to evaluate the magnetostatic field distribution, especially for the magnetic flux densities within the outer air-gap. Once the number of steel pole-pieces equals the sum of the pole-pair numbers of the high-speed rotor and the low-speed rotor, the coaxial magnetic gear device possesses higher magnetic flux densities, thereby generating greater transmitted torque.


Author(s):  
Alden Yellowhorse ◽  
Larry L. Howell

Ensuring that deployable mechanisms are sufficiently rigid is a major challenge due to their large size relative to their mass. This paper examines three basic types of stiffener that can be applied to light, origami-inspired structures to manage their stiffness. These stiffeners are modeled analytically to enable prediction and optimization of their behavior. The results obtained from this analysis are compared to results from a finite-element analysis and experimental data. After verifying these models, the advantages and disadvantages of each stiffener type are considered. This comparison will facilitate stiffener selection for future engineering applications.


2014 ◽  
Vol 633-634 ◽  
pp. 693-698
Author(s):  
Long Xin ◽  
Shi Chao Cui ◽  
Qi Lin Shu

In this paper, the ram of boring and milling machining center is taken as the research object. A new method that hydraulic pull rods compensation is proposed to solve the problem of deformation compensation of long stroke ram of boring and milling machining center. Firstly, the method of finite element analysis is used to get the laws of ram deformation and the relationship curve between the ram deformation and the stroke of ram. Secondly, the preliminary calculation value of pull rods compensation force is derived based on the theoretical analysis of material mechanics. The relationship curve between compensation force and the stroke of ram is obtained by finite element analysis and polynomial least squares method. Finally, the analyzed results are as follows: the laws of ram deformation distribution is accurately predicted by the used method, the deflection error of the ram is well controlled,and the machining precision is significantly improved.


2013 ◽  
Vol 856 ◽  
pp. 147-152
Author(s):  
S.H. Adarsh ◽  
U.S. Mallikarjun

Shape Memory Alloys (SMA) are promising materials for actuation in space applications, because of the relatively large deformations and forces that they offer. However, their complex behaviour and interaction of several physical domains (electrical, thermal and mechanical), the study of SMA behaviour is a challenging field. Present work aims at correlating the Finite Element (FE) analysis of SMA with closed form solutions and experimental data. Though sufficient literature is available on closed form solution of SMA, not much detail is available on the Finite element Analysis. In the present work an attempt is made for characterization of SMA through solving the governing equations by established closed form solution, and finally correlating FE results with these data. Extensive experiments were conducted on 0.3mm diameter NiTinol SMA wire at various temperatures and stress conditions and these results were compared with FE analysis conducted using MSC.Marc. A comparison of results from finite element analysis with the experimental data exhibits fairly good agreement.


Sign in / Sign up

Export Citation Format

Share Document