Preparation and Properties of Cu-10Sn Alloy Infiltrated 316L Stainless Steel Composites

2012 ◽  
Vol 503-504 ◽  
pp. 552-555 ◽  
Author(s):  
Xia Yang ◽  
Ying Long Bai ◽  
Meng Xu ◽  
Shi Ju Guo

A new method to produce powder metallurgy (P/M) 316L stainless steel matrix composite by pressureless infiltrating Cu-10Sn alloy was studied. The effect of various compaction pressures and infiltrating temperatures on the microstructure, mechanical properties and corrosion resistance was investigated. The results show that high density P/M 316L stainless steel matrix composite could be achieved by infiltration. A maximum relative density of 98% was achieved, provided that the porosity of the skeleton was controlled at 18%~22%. After infiltration, hardness of the samples increased from 49 HRB to 89 HRB. Moreover, the critical corrosion potential reached -212 mV, close to the level of as cast 316L stainless steel. The hardness of infiltrated composite of the same density decreased with increase in initial skeleton density. It was necessary to prevent the egregious grain growth while the infiltrating temperature was too high.

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3270
Author(s):  
Sadaqat Ali ◽  
Muhammad Irfan ◽  
Usama Muhammad Niazi ◽  
Ahmad Majdi Abdul Rani ◽  
Imran Shah ◽  
...  

The powder metallurgy (PM) technique has been widely used for producing different alloy compositions by the addition of suitable reinforcements. PM is also capable of producing desireable mechanical and physical properties of the material by varying process parameters. This research investigates the addition of titanium and niobium in a 316L stainless steel matrix for potential use in the biomedical field. The increase of sintering dwell time resulted in simultaneous sintering and surface nitriding of compositions, using nitrogen as the sintering atmosphere. The developed alloy compositions were characterized using OM, FESEM, XRD and XPS techniques for quantification of the surface nitride layer and the nitrogen absorbed during sintering. The corrosion resistance and cytotoxicity assessments of the developed compositions were carried out in artificial saliva solution and human oral fibroblast cell culture, respectively. The results indicated that the nitride layer produced during sintering increased the corrosion resistance of the alloy and the developed compositions are non-cytotoxic. This newly developed alloy composition and processing technique is expected to provide a low-cost solution to implant manufacturing.


Alloy Digest ◽  
2021 ◽  
Vol 70 (3) ◽  

Abstract ATI 201 HP is a 200-series, Cr-Mn-Ni austenitic stainless steel. It is comparable to the Cr-Ni stainless steel types 301, 304, and 304L in many respects, and can even provide some advantages over the 18-8 grades in certain applications. Because it possess a very desirable combination of economy plus good mechanical properties and corrosion resistance, it has been used in a wide variety of consumer and transportation applications. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-1332. Producer or source: ATI.


Sign in / Sign up

Export Citation Format

Share Document