Development of Ketoprofen Microemulsion for Transdermal Drug Delivery

2012 ◽  
Vol 506 ◽  
pp. 441-444 ◽  
Author(s):  
Narumon Worachun ◽  
Praneet Opanasopit ◽  
Theerasak Rojanarata ◽  
Tanasait Ngawhirunpat

The aim of this study was to prepare microemulsion for transdermal drug delivery of ketoprofen (KP). The physicochemical and chemical properties of microemulsion were evaluated. The microemulsion were composed of isopropyl myristate (IPM) as oil phase, water, PEG40-hydrogenated castor oil (Cremophor® RH40) as surfactant and PEG400 as co-surfactant, and the surfactant: co-surfactant ratio used was 1:1. The viscosity, droplet size, pH, conductivity of microemulsion and skin permeation of KP through shed snake skin were evaluated. The particle size, viscosity and conductivity of microemulsions were in the range of 172-468 nm, 234.82-1067.35 cP and 6.80-20.87µS/cm, respectively. The ratio of IPM and surfactant mixture played an important role on KP loading capacity of microemulsions formulation and skin permeation of KP. While amount of surfactant increased, the loading capacity of KP increased, but the skin permeation of KP decreased. The results suggested that the novel microemulsion system composed of IPM, water, Cremophor® RH40:PEG400 (ratio 1:1) can be applied for using as a transdermal drug delivery carrier.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1055
Author(s):  
Apichart Atipairin ◽  
Charisopon Chunhachaichana ◽  
Titpawan Nakpheng ◽  
Narumon Changsan ◽  
Teerapol Srichana ◽  
...  

Sildenafil citrate is used to treat mild to moderate erectile dysfunction and premature ejaculation. However, it has low oral bioavailability, numerous adverse effects, and delayed onset of action. These problems may be resolved by transdermal delivery to the penis. Hence, sildenafil citrate was formulated as a microemulsion system using isopropyl myristate, Tween 80, PEG400, and water (30:20:40:10). The hydrogel used in the microemulsion was 2% w/w poloxamer 188. The sildenafil microemulsion-loaded hydrogels were characterised for their appearance, particle size, pH, spreadability, swelling index, viscosity, sildenafil drug content, membrane permeation, epithelial cell cytotoxicity, and in vitro drug metabolism. The optimised formulated microemulsion showed the lowest droplet size and highest solubility of sildenafil citrate. The in vitro skin permeation of the sildenafil citrate microemulsion-loaded hydrogel was significantly higher than that of the sildenafil suspension, with a 1.97-fold enhancement ratio. The formulated microemulsion exhibited a 100% cell viability, indicating its safety for skin epithelial cells. The major metabolic pathway of sildenafil citrate loaded in the microemulsion formulation was hydroxylation. Furthermore, loading sildenafil in the microemulsion reduced the drug metabolite by approximately 50% compared to the sildenafil in aqueous suspension. The sildenafil citrate-loaded isopropyl myristate-based microemulsion hydrogels were physically and chemically stable over 6 months of storage. The sildenafil citrate microemulsion-loaded hydrogel showed in vitro results suitable for used as a transdermal drug delivery system.


2019 ◽  
Vol 11 (1) ◽  
pp. 55
Author(s):  
Shikha Baghel Chauhan ◽  
Tanveer Naved ◽  
Nayyar Parvez

Objective: The combination therapy of ethinylestradiol and testosterone in post-menopausal females has shown improved sexual response and libido. The present studies were designed to develop a suitable matrix-type transdermal drug delivery system (TDDS) of ethinylestradiol and testosterone using the polymer chitosan.Methods: Five formulations (ET1 to ET5) were developed by varying the concentration of polymer and keeping the drug load constant. Physical parameters and drug excipient interaction studies were evaluated in all the formulations. In vitro skin permeation profiles of ethinylestradiol and testosterone from various formulations were simultaneously characterized in a thermostatically controlled modified Franz Diffusion cell using HPLC. Based on the physical parameters and in vitro skin permeation profile formulation ET3 containing 30 mg/ml of chitosan was found to be the best and chosen for further studies. Optimized formulation was subjected to in vivo pharmacokinetic analysis in rats using ELISA.Results: Stability profile of patch formulation ET3 depicted stability up to 3 mo. One week skin irritation evaluation in rats indicated that formulation ET3 was nonirritating. Combination transdermal patch across rat skin showed a maximum release of 92.936 and 95.03 % in 60 h with a flux of 2.088 and 21.398 µg/cm2h for ethinylestradiol and testosterone respectively.Conclusion: The net result of this study is the formulation of a stable, non-irritating transdermal patch of ethinylestradiol and testosterone, with good bioavailability and can be used as Estrogen Replacement Therapy (ERT) in postmenopausal women.


2009 ◽  
Vol 26 (6) ◽  
pp. 1344-1352 ◽  
Author(s):  
Suneela Prodduturi ◽  
Glen J. Smith ◽  
Anna M. Wokovich ◽  
William H. Doub ◽  
Benjamin J. Westenberger ◽  
...  

2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Luthfia Azzahra ◽  
Soraya Ratnawulan Mita ◽  
Sriwidodo Sriwidodo

Herbal compounds have different physicochemical properties. Its use on the oral route often has low biological availability. Therefore, alternative transdermal routes are used through the skin. The stratum corneum skin layer is the most difficult layer to penetrate. Therefore it is necessary to use a drug delivery system such as ethosome, transfersome or transethosome to increase transdermal drug delivery. This review article aims to look at the potential of ethosome, transfersome, and transethosome in increasing their ability to deliver herbal drugs in terms of their formulation and characterization. Literature searches were performed using online search engines namely NCBI and Google Scholar with the keywords ‘Transdermal Drug Delivery System’, 'Ethosome', 'Transfersome', and 'Transethosome'. The result showed compositions of ethosomes are phospholipids, water, and ethanol. The composition of transfersome is phospholipid, water, and edge activator. Transethosomes are a combination of phospholipids, water, ethanol, and edge activators. The role of ethanol and edge activator is thought to increase skin permeation. Transdermal drug delivery systems can be used on herbal drugs to increase transdermal drug delivery.Keywords: Transdermal, Ethosome, Transfersome, Transethosome, Herbal.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 209 ◽  
Author(s):  
Ajeesh Chandrasekharan ◽  
Young Jun Hwang ◽  
Keum-Yong Seong ◽  
Samdae Park ◽  
Sodam Kim ◽  
...  

Chitosan has been widely used as a nature-derived polymeric biomaterial due to its high biocompatibility and abundance. However, poor solubility in aqueous solutions of neutral pH and multiple fabrication steps for the molding process limit its application to microneedle technology as a drug delivery carrier. Here, we present a facile method to prepare water-soluble chitosan and its application for sustained transdermal drug delivery. The water-soluble chitosan was prepared by acid hydrolysis using trifluoroacetic acid followed by dialysis in 0.1 M NaCl solutions. We successfully fabricated bullet-shaped microneedle (MN) arrays by the single molding process with neutral aqueous chitosan solutions (pH 6.0). The chitosan MN showed sufficient mechanical properties for skin insertion and, interestingly, exhibited slow dissolving behavior in wet conditions, possibly resulting from a physical crosslinking of chitosan chains. Chitosan MN patches loading rhodamine B, a model hydrophilic drug, showed prolonged release kinetics in the course of the dissolving process for more than 72 h and they were found to be biocompatible to use. Since the water-soluble chitosan can be used for MN fabrication in the mild conditions (neutral pH and 25 °C) required for the loading of bioactive agents such as proteins and achieve a prolonged release, this biocompatible chitosan MN would be suitable for sustained transdermal drug delivery of a diverse range of drugs.


2011 ◽  
Vol 18 (4) ◽  
pp. 798-803 ◽  
Author(s):  
Tanasait Ngawhirunpat ◽  
Narumon Worachun ◽  
Praneet Opanasopit ◽  
Theerasak Rojanarata ◽  
Suwannee Panomsuk

Sign in / Sign up

Export Citation Format

Share Document