Primary Investigation and Analysis of Arsenic Contamination in Soil-Plant of Tin Mine in Gejiu

2012 ◽  
Vol 518-523 ◽  
pp. 444-452 ◽  
Author(s):  
Jing Wang ◽  
Wei Xuan Fang

According to the primary study on the As contamination in soil and crops including potato and pea in tin tailings in Gejiu area, Yunnan Province, it has been found that concentrations of As in rhizosphere far exceed Chinese National Grade Ⅲ standard of soil environmental quality of China (GB 15618-1995). It also has been found that the Ferns were living in the tin tailings suffered from the contamination of heavy metals. Compared with the limit of national criteria for food sanitation in China, the concentrations of As in edible parts of ferns are 90 times. Therefore, the remediation of soil based on geochemical distribution characteristics of heavy metal in the tailings is demanded. And avoiding crops-planting in the tailings to reduce the diffusion of heavy metal contamination in food chain of mining area is necessary.

Author(s):  
Yangbing Li ◽  
Fengman Fang ◽  
Yuesheng Lin ◽  
Yue Wang ◽  
Ying Kuang ◽  
...  

Author(s):  
Sukirtee Chejara ◽  
Paras Kamboj ◽  
Y. V. Singh ◽  
Vikas Tandon

Heavy metal contamination has gained popularity worldwide due to their persistent nature in the environment, on the top of that non-biodegradable nature makes its accumulation easy to toxic levels. Understanding the nature of contamination has become a major concern before heavy metals deteriorate the quality of soil; to diagnose heavy metal pollution suitable indices are required. Microbial indices gaining importance because of their sensitive nature towards change in surrounding, which is the imperative quality required to select microbes as environmental indicators. Albeit enough literature is present related to this topic but the information is scattered so role of this chapter is imperative. The chapter will be helpful for the reader to provide a thorough understanding of merits and demerits of microbiological indices for heavy metal contaminated and restituted soils. The changes in microbiological indices and their mechanism of response towards heavy metal stress are effectively summarized. Research gap and future needs of microbial diagnosis of heavy metal contaminated soils are discussed.


2018 ◽  
Vol 10 (11) ◽  
pp. 1830 ◽  
Author(s):  
Yongsik Jeong ◽  
Jaehyung Yu ◽  
Lei Wang ◽  
Ji Shin

We analyzed chemical composition, mineralogy, and spectral characteristics of the tailings of a hydrothermal gold mine in South Korea. We measured spectral responses of tailings to arsenic (As) and lead (Pb) concentration and developed and validated a prediction model for As and Pb in the tailings. The tailing was heavily contaminated with heavy metal elements and composed of rock forming minerals, gangue minerals and hydrothermal alteration minerals. The spectral features of the tailing were closely related to hydrothermal alteration minerals. The spectral responses associated with As and Pb concentrations were detected in shortwave infrared (SWIR) region at absorption positions of the hydrothermal alteration minerals. The prediction models were constructed using spectral bands of absorption features of the hydrothermal alteration minerals and were statistically significant. We found distinctive differences in spectral characteristics and spectral response to heavy metal contamination between the tailings and soils in the mining area. While the spectral signals to heavy metal concentration of tailings were associated with the hydrothermal alteration minerals, those of soils in mining area were manifested by clay minerals originated from weathering processes. This infers that geological processes associated with formation of soils and tailings are the major controlling factors of spectral responses to heavy metal contamination. This study provides a rare reference for the estimation of As and Pb concentration in the tailings with similar types of ore deposit and host rock.


Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 85
Author(s):  
Garima Awasthi ◽  
Varad Nagar ◽  
Saglara Mandzhieva ◽  
Tatiana Minkina ◽  
Mahipal Singh Sankhla ◽  
...  

The consequences of heavy metal contamination are progressively degrading soil quality in this modern period of industry. Due to this reason, improvement of the soil quality is necessary. Remediation is a method of removing pollutants from the root zone of plants in order to minimize stress and increase yield of plants grown in it. The use of plants to remove toxins from the soil, such as heavy metals, trace elements, organic chemicals, and radioactive substances, is referred to as bioremediation. Biochar and fly ash techniques are also studied for effectiveness in improving the quality of contaminated soil. This review compiles amelioration technologies and how they are used in the field. It also explains how nanoparticles are becoming a popular method of desalination, as well as how they can be employed in heavy metal phytoremediation.


Sign in / Sign up

Export Citation Format

Share Document