Finite Element Modeling of Burr Formation in Orthogonal Metal Cutting

2008 ◽  
Vol 53-54 ◽  
pp. 71-76 ◽  
Author(s):  
Wen Jun Deng ◽  
C. Li ◽  
Wei Xia ◽  
X.Z. Wei

A coupled thermo-mechanical model of plane-strain orthogonal metal cutting including burr formation is presented using the commercial finite element code. A simulation procedure based on Normalized Cockroft-Latham damage criterion is proposed for the purpose of better understanding the burr formation mechanism and obtaining a quantitative analysis of burrs at exit. The cutting process is simulated from the transient initial chip formation state to the steady-state of cutting, and then to tool exit transient chip flow, by incrementally advancing the cutting tool. The effects of cutting condition on the non-steady-state chip flow while tool exit can be investigated using the developed finite element model.

2007 ◽  
Vol 24-25 ◽  
pp. 71-76 ◽  
Author(s):  
Wen Jun Deng ◽  
Wei Xia ◽  
Long Sheng Lu ◽  
Yong Tang

2D finite element model with the same material for backup to minimize the burr size was developed to investigate mechanism of burr formation and burr minimization. The flowstress of the workpiece and backup material are taken as a function of strain, strain-rate and temperature. Temperature-dependent material properties are also considered. The Cockroft-Latham damage criterion has been adopted to simulate ductile fracture. The crack initiation and propagation is simulated by deleting the mesh element. The result shows putting a backup material behind the edge of the workpiece is an effective way to minimize the burr size. The effects of cutting condition, temperature and different backup material properties on the burr formation and burr size can be investigated using the developed finite element model. This model could be useful in the search for optimal tool geometry and cutting condition for burr minimization and for the modeling of a burr formation mechanism.


1985 ◽  
Vol 107 (4) ◽  
pp. 349-354 ◽  
Author(s):  
J. S. Strenkowski ◽  
J. T. Carroll

A finite element model of orthogonal metal cutting is described. The paper introduces a new chip separation criterion based on the effective plastic strain in the workpiece. Several cutting parameters that are often neglected in simplified metal-cutting models are included, such as elastic-plastic material properties of both the workpiece and tool, friction along the tool rake face, and geometry of the cutting edge and workpiece. The model predicts chip geometry, residual stresses in the workpiece, and tool stresses and forces, without any reliance on empirical metal cutting data. The paper demonstrates that use of a chip separation criterion based on effective plastic strain is essential in predicting chip geometry and residual stresses with the finite element method.


2008 ◽  
Vol 53-54 ◽  
pp. 101-107 ◽  
Author(s):  
Qin Xi Shen ◽  
Gui Cheng Wang ◽  
Yun Ming Zhu ◽  
Hai Jun Qu

The metal cutting burr is one of the factors that influence the edge quality and performance of precision parts.A finite element model has been established to investigate the mechanism of burr formation and limit transformation in high-speed machining 2024Aluminum alloy .The burr/fracture formation process is simulated with elastic-plastic nonlinear element method based on ABAQUS.This paper has investigated the mechanism of burr /fracture formation and the limit transformation condition of cutting-direction burrs and fractures in high-speed machining and the limit transformation condition change with the cutting condition,which lay scientific basis of further research on cutting burrs formation and its minimization and deburring technology.


1966 ◽  
Vol 8 (1) ◽  
pp. 36-41 ◽  
Author(s):  
H. E. Enahoro ◽  
P. L. B. Oxley

In recent papers it has been suggested that over part of the tool-chip contact zone the chip does not slide but sticks to the tool, chip flow taking place by shear within the body of the chip. Sticking contact is inconsistent with steady state cutting and in this paper a slip-line field model of chip flow is presented which does not include sticking contact and which is consistent with the relevant experimental observations.


2008 ◽  
Vol 392-394 ◽  
pp. 88-92
Author(s):  
Xiao Wang ◽  
H. Yan ◽  
C. Liang ◽  
B. Wu ◽  
Hui Xia Liu ◽  
...  

To prevent or reduce the formation of burr efficiently in metal cutting, it is necessary to reveal the burr formation mechanism. A finite element model of cutting-direction burr formation in orthogonal machining was presented in this paper. The simulation of the burr formation process was conducted. Undeformed chip thickness, rake angle, rounded cutting edge radius and workpiece material were included in cutting conditions, whose influences on burr formation were investigated, according to the simulation results. By comparing the results of the simulation and the experiment, good consistency is achieved which proves that the finite element model of burr formation in this paper is significant and effective to predict burr formation.


2009 ◽  
Vol 416 ◽  
pp. 568-571
Author(s):  
You Yi Zheng ◽  
Ai Hua Gao

Based on several assumptions, this paper established the finite element model of the heat coupling of the orthogonal metal cutting, and analyzes the key technology that involved in the Orthogonal cutting finite element simulation.


1999 ◽  
Vol 122 (2) ◽  
pp. 229-237 ◽  
Author(s):  
I. W. Park ◽  
D. A. Dornfeld

Finite element models in orthogonal cutting are presented in order to examine the influences of exit angles of the workpiece, tool rake angles, and backup materials on burr formation processes in 304 L stainless steel in particular. Based on the metal-cutting simulation procedure proposed by the authors, a series of stress and strain contours and final burr/breakout configurations are obtained. The burr formation mechanisms with respect to five different exit angles are found, and duration of the burr formation process increases with an increase of exit angle, resulting in different burr/breakout configurations. Based on the development of negative shear stress in front of the tool tip, the tool tip damage, what is called “chipping,” is investigated. Also, with fixed cutting conditions and workpiece exit geometry, the influence of the rake angle is found to be closely related to the rate of plastic work in steady-state cutting because the larger the rate of plastic work in steady-state cutting, the earlier the burr initiation commences. Furthermore, in order to effectively minimize the burr size, three cases of backup material influences on burr formation processes are examined. It is found that the burr size can be effectively minimized when the backup material supports the workpiece only up to the predefined machined surface. [S0094-4289(00)01402-X]


1990 ◽  
Vol 112 (4) ◽  
pp. 313-318 ◽  
Author(s):  
J. S. Strenkowski ◽  
Kyoung-Jin Moon

An Eulerian finite element model is presented that simulates orthogonal metal cutting. The model predicts chip geometry and temperature distribution in the workpiece, chip, and tool without the need for empirical cutting data. With the capability to predict chip geometry, the tool-chip contact length can also be found. Characteristics of the flow field in the vicinity of the tool can also be determined, such as the material velocity, and the stress and strain-rate distributions. It was found that the shear stress occurs over a finite region in front of the tool, rather than a single shear plane. Cutting experiments were performed for aluminum alloy 6061-T6 to validate the model. Good correlation with the model was found based on tool forces and average tool-chip interface temperature measurements.


2004 ◽  
Vol 471-472 ◽  
pp. 582-586 ◽  
Author(s):  
Shi Jin Chen ◽  
Q.L. Pang ◽  
K. Cheng

In this paper, a finite element model of a two-dimensional orthogonal metal cutting process is used to simulate the chip formation, cutting forces, stress, strain and temperature distributions. Two deformable parts are involved in this model: the workpiece and the cutting tool. To make the results of the simulation agree the orthogonal cutting test better, the separation surface between the chip and the machined surface is not predefined in this simulation. The chip-separation criterion is based on the Johnson and Cook law. This work will help as a reference to tackle more complex cutting processes such as oblique and discontinuous cutting.


Sign in / Sign up

Export Citation Format

Share Document