Influence of Cooling Rate on the Microstructure in HCCI/Steel Bimetal Composite Hammer

2012 ◽  
Vol 538-541 ◽  
pp. 1041-1044 ◽  
Author(s):  
Ning Wei ◽  
Kai Wang ◽  
Xiang Kui Zhou ◽  
Qiang Wang ◽  
Qiang Liu ◽  
...  

The HCCI/carbon steel bimetal composite hammer was prepared by bimetal liquid cast process and the effect of cooling rate, which is obtained by different mold material, on the microstructures of hypereutectic HCCI was studied. The results show that the primary carbides and eutectic carbides are refined with the increase of cooling rate. Good metallurgical combination of the HCCI/carbon steel bimetal hammer can be reached by bimetal liquid cast process with fast cooling mold.

2017 ◽  
Vol 55 (04) ◽  
pp. 229-236
Author(s):  
I. SCHINDLER ◽  
S. RUSZ ◽  
P. OPĚLA ◽  
J. RUSZ ◽  
Z. SOLOWSKI ◽  
...  

2018 ◽  
Vol 185 ◽  
pp. 00012
Author(s):  
Zhou Li ◽  
Jingwei Zhao ◽  
Qingfeng Zhang ◽  
Sihai Jiao ◽  
Zhengyi Jiang

Bimetal composites have wide applications due to their excellent overall performance and relatively low comprehensive cost. The aim of this study is to investigate the forming behaviour of stainless/carbon steel bimetal composite during stamping by finite element method (FEM). In this work, the bonding interface of bimetal composite sheet was assumed to be perfect without delamination during the plastic forming process for simplicity. Uniaxial tensile tests on base metal (carbon steel) and compositing metal (stainless steel) were first carried out, respectively, in order to obtain the tensile properties of each of the component materials required in the forming simulation. Processing variables, including the layer stacking sequence, relative thickness ratios of two layers and friction were considered, and their effects on the distributions of circumferential stress and thickness strain were analysed. The bimetal composite sheet was set as the eight-node solid elements in the developed FEM model, which is effective for evaluating the distributions of circumferential stress and thickness strain, and predicting the high-risk region of necking during the stamping of bimetal composites. The simulation results can be used as an evaluation indicator of the capability of forming machine to ensure the bimetal composite can be safely formed.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5059
Author(s):  
Michail Nikolaevich Brykov ◽  
Ivan Petryshynets ◽  
Miroslav Džupon ◽  
Yuriy Anatolievich Kalinin ◽  
Vasily Georgievich Efremenko ◽  
...  

The purpose of the research was to obtain an arc welded joint of a preliminary quenched high-carbon wear resistant steel without losing the structure that is previously obtained by heat treatment. 120Mn3Si2 steel was chosen for experiments due to its good resistance to mechanical wear. The fast cooling of welding joints in water was carried out right after welding. The major conclusion is that the soft austenitic layer appears in the vicinity of the fusion line as a result of the fast cooling of the welding joint. The microstructure of the heat affected zone of quenched 120Mn3Si2 steel after welding with rapid cooling in water consists of several subzones. The first one is a purely austenitic subzone, followed by austenite + martensite microstructure, and finally, an almost fully martensitic subzone. The rest of the heat affected zone is tempered material that is heated during welding below A1 critical temperature. ISO 4136 tensile tests were carried out for the welded joints of 120Mn3Si2 steel and 09Mn2Si low carbon steel (ASTM A516, DIN13Mn6 equivalent) after welding with fast cooling in water. The tests showed that welded joints are stronger than the quenched 120Mn3Si2 steel itself. The results of work can be used in industries where the severe mechanical wear of machine parts is a challenge.


Author(s):  
Jaideep Dutta ◽  
S. Narendranath ◽  
Aleksandr Zhilin

This article reveals a detailed study of temperature cycle formed during Gas Tungsten Arc welding of high carbon steel (AISI 1090) butt joints. Experimental work has been carried out to estimate the temperature distribution along fusion boundary to longitudinal direction of the weldment by mounting thermocouples on the plate along with Data Acquisition System. Heat flux distribution due to moving point heat source has been demonstrated by implementing Gaussian surface heat flux and Angular Torch model. Cooling rate has predicted by application of Adams cooling rate equation. Conduction-convection phenomena plays dominant role for evaluating heat loss from the weld joint and Differential Transform Method (DTM) has been applied to judge non-dimensional temperature distribution. Analytical studies has shown well agreement with experimental temperature distribution.


2020 ◽  
Vol 61 (9-10) ◽  
pp. 543-546
Author(s):  
Qingsuo Liu ◽  
Fang Wang ◽  
Xin Zhang ◽  
Huibin Wang ◽  
Jinman Li

2020 ◽  
Vol 1000 ◽  
pp. 375-380
Author(s):  
Desrilia Nursyifaulkhair ◽  
Faris Arief Mawardi ◽  
Nokeun Park ◽  
Eung Ryul Baek ◽  
Sungwook Kim

The alteration in phase morphology of Ti-6Al-4V alloy fabricated using directed energy deposition (DED) was investigated in this study. Owing to the fast cooling rate during DED, the specimen exhibited the diffusionless transformation products of martensite (α′) and massive (αm) phases. In the top layer, the α′ exhibited a needle-like morphology with the width of approximately 0.94 μm. Meanwhile, the αm presented a lamellar structure with α thickness of nearly 0.98 μm. In contrast, the morphology of α′ and αm started to decompose into α+β phase in the bottom layer. Furthermore, the hardness values increased with higher deposition layers. These phenomena could be explained by the effect of repetitive heating, as the nature of DED method during the depositing of new layers. Moreover, it was observed the α thickness of αm in the bottom layer was finer than that in the top layer due to the higher cooling rate.


2011 ◽  
Vol 43 (5) ◽  
pp. 1639-1648 ◽  
Author(s):  
Dong Jun Mun ◽  
Eun Joo Shin ◽  
Kyung Chul Cho ◽  
Jae Sang Lee ◽  
Yang Mo Koo

Author(s):  
Fengmin Su ◽  
Nannan Zhao ◽  
Yangbo Deng ◽  
Bohan Tian ◽  
Chunfeng Mu ◽  
...  

Ultra-fast cooling is the key to successful cell vitrification cryopreservation of lower concentration cryoprotective solution. This research develops a cell cryopreservation methodology which utilizes thin film evaporation and achieves vitrification of relatively low concentration cryoprotectant with an ultra-fast cooling rate. Experimental results show that the average cooling rate of dimenthylsulphoxide cryoprotective solution reaches 150,000°C/min in a temperature range from 10°C to −180°C. The ultra-fast cooling rate can remarkably improve the vitrification tendencies of the cryoprotective solution. This methodology opens the possibility for more successful cell vitrification cryopreservation.


Sign in / Sign up

Export Citation Format

Share Document