Research on the Cold Rolling Mechanical Character of Low Carbon Base Plate Produced by CSP

2012 ◽  
Vol 538-541 ◽  
pp. 1742-1745
Author(s):  
Su Fen Wang ◽  
Yan Peng ◽  
Zhi Jie Li ◽  
Yun Fei Liu

With cold rolling base plate of low carbon steel by CSP process, the cold deformation experiments were carried out by the two-roller reverse-mill in the laboratory. The work-hardening was studied for different deformation plates through the room temperature tensile and microhardness measured, and the microstructure was also studied after deformation. It was found that the steel yield and tensile strength increased and work-hardening marked with the deformation augment, the test steel microstructure is ferrite with mingle small amount pearlite, its grain is refined and elongated with deformation increasing.

2021 ◽  
Author(s):  
Oluwole Daniel Adigun ◽  
Muyideen Adebayo Bodude ◽  
Aanuoluwapo Rebecca Adigun ◽  
Babatunde Abiodun Obadele ◽  
Abdullahi Olawale Adebayo ◽  
...  

Abstract In this study, the effects of austempering on the microstructure, mechanical properties (micro hardness, impact energy and tensile strength) and corrosion behaviours of AISI 1018 low carbon steel were evaluated. The steel specimens were subjected to heat treatment by austenitizing at 830°C, maintained in this condition for 90 min before rapid cooling in a NaNO3 salt bath sustained at 300°C for isothermal transformation for additional 50 min and finally allowed to air cool to room temperature. The as-received and the austempered samples were tested for corrosion in both 0.5M aqueous acidic (HCl) and 0. 5M alkaline (NaOH) media. Microstructural investigation using scanning electron microscope (SEM) reveals transformation from ferrite/pearlite phases to bainite over the austempering process. Interestingly, significant improvements of 15.7% to 95.7% in the various mechanical properties (micro hardness, impact energy and tensile strength) and corrosion resistance in both media were observed.


2010 ◽  
Vol 659 ◽  
pp. 7-12 ◽  
Author(s):  
Fábián Enikő-Réka

The cold rolling effect on the hydrogen permeability (TH value) and on the microstructure have been studied on samples prepared from Al-killed low carbon steel sheets after several cold rolling levels. The TH values of the hot rolled strips were very short, but due to the cold rolling increase exponentially. The fragmentation of large cementite phase has a significant influence on the evolution of texture during the cold rolling process. The cold deformation effects on the TH value were studied on four annealed enamelling grade steel sheets also. Depending on the carbides sizes and carbides position in ferrite grains after annealing the TH values increase or decrease after low deformation degrees, due to the steel texture modification and dislocation character. Dislocations act as major tripping site for hydrogen, if deformation degree is higher than 30%.


2014 ◽  
Vol 875-877 ◽  
pp. 63-67 ◽  
Author(s):  
Dinh van Hai ◽  
Nguyen Trong Giang

In this work, ECAP technique was combined with cold rolling process in order to enhance mechanical properties and microstructure of pure Titanium. Coarse grain (CG) Titanium with original grain size of 150 μm had been pressed by ECAP at 425oC by 4, 8 and 12 passes, respectively. This process then was followed by rolling at room temperature with 35%, 55%, and 75% rolling strains. After two steps, mechanical properties such as strength, hardness and microstructure of processed Titanium have been measured. The result indicated significant effect of cold rolling on tensile strength, hardness and microstructure of ECAP-Titanium.


2014 ◽  
Author(s):  
Orlando León García ◽  
Rafael Fagundes Ferreira ◽  
Victor Carretero Olalla ◽  
Roumen Petrov

2012 ◽  
Vol 602-604 ◽  
pp. 305-308
Author(s):  
Zhi Xue Liu ◽  
Ju Qiang Cheng

In order to research the cold deformation work hardening characteristic of new type low carbon bainitic steel, this article studies the effect of different degrees of cold deformation (elongation and compression) and different tempering temperatures on microstructure and mechanical properties of 15SiMn2Mo low carbon beinaitic steel. The results showed that with the tempering temperature increasing after 10% pre-tension deformation, the tensile strength and yield strength of the test material increased first and then decreased, and reached its peak value at 300°C, roughly the same as the strength of hot-rolling and 300°C tempering. With the compression deformation degree rising, the hardness of test material increased and showed the test material has good work hardening performance. Streamline and "z" shape ferrite banding appeared in microstructure. With the tempering temperature increasing, the microstructure of compressed deformation steel recoveried and recrystallized, the tendency of ferrite along the streamline was weakened, the new refining granular phase was enhanced and uniformity of microstructure was improved. The microstructure refinement was significantly increased with the compressive deformation degree rising.


Sign in / Sign up

Export Citation Format

Share Document