Microstructural Evolution in a Low Carbon Steel During Cold Rolling and Subsequent Annealing

2010 ◽  
Vol 10 (9) ◽  
pp. 6177-6181 ◽  
Author(s):  
E. Ghassemali ◽  
A. Kermanpur ◽  
A. Najafizadeh
2014 ◽  
Vol 1082 ◽  
pp. 202-207 ◽  
Author(s):  
Shu Yan ◽  
Xiang Hua Liu

A low carbon steel was treated by quenching and partitioning (Q&P) process, and a detailed characterization of the microstructural evolution and testing of mechanical properties were carried out. The resulted mechanical properties indicate that with the partitioning time increasing, the tensile strength decreases rapidly first and then remains stable, and the total elongation increases first then decreases. The investigated steel subjected to Q&P process exhibits excellent products of strength and elongation (17.8-20.6 GPa•%). The microstructural evolution of martensite matrix during the partitioning step was observed, and the morphology and content of retained austenite were characterized. The working hardening behavior of the samples was analyzed, and the retained austenite with higher carbon content contributes to the uniform elongation more effectively.


2020 ◽  
Vol 7 (1) ◽  
pp. 016554
Author(s):  
Siuli Dutta ◽  
Ashis K Panda ◽  
Amitava Mitra ◽  
Subrata Chatterjee ◽  
Rajat K Roy

2014 ◽  
Vol 1004-1005 ◽  
pp. 1256-1259
Author(s):  
Shen Bai Zheng ◽  
Shi Jie Liu ◽  
Hong Bin Li ◽  
Bin Feng ◽  
Xue Song Hui

The austenite steel after rolling was radiated by the alternating magnetism, and the effects that alternating magnetic on the austenite transition was studied. The result shows that the alternating magnetism promotes the austenitic grain growth of low carbon steel. If the magnetic field intensity is increased, it could provide better performance of raw materials to cold rolling processing.


2008 ◽  
Vol 48 (7) ◽  
pp. 994-1000 ◽  
Author(s):  
Xinjun Sun ◽  
Haiwen Luo ◽  
Han Dong ◽  
Qingyou Liu ◽  
Yuqing Weng

Sign in / Sign up

Export Citation Format

Share Document