Analysis and Optimal Design on Electrical Dust Precipitator Steel Structures

2012 ◽  
Vol 538-541 ◽  
pp. 3249-3252
Author(s):  
Yang Gao ◽  
Lu Yu Huang ◽  
He Zhang

By using the finite element analysis software ANSYS, this article presented the structure stress and displacement of a type of electrical dust precipitator on a variety of loads effect, after the main steel structures of the model was built according to the frontal solution method, optimization design of model's main steel structures had been done. The modeling and the computational Method has been proved the reasonableness of precision, and can be further used for structure analysis and so it has reference value for optimization design of other electrical precipitator steel structures.

2013 ◽  
Vol 753-755 ◽  
pp. 1196-1200
Author(s):  
Lu Yu Huang ◽  
Yang Gao ◽  
Xia Cao

Based on the construction features of the steel structures of a type of electrical dust precipitator, a finite element model is established with large-scale finite element analysis software ANSYS, and the structure stress and displacement of the model under all sorts of loads are analyzed with the frontal solution method. The results indicate that analysis is relatively accurate, the finite element model and the analysis method is appropriate. The result can be further used for optimization design of the electrical precipitator steel structures.


2011 ◽  
Vol 121-126 ◽  
pp. 3386-3390
Author(s):  
Gui Hua Han ◽  
Bing Wei Gao ◽  
Yun Fei Wang ◽  
Gui Tao Sun ◽  
Di Wu ◽  
...  

In order to improve the dynamic characteristics of crossbeam of heavy NC gantry moving boring & milling machine, the ribbed slab structure of beam were analyzed and optimized with the finite element analysis software, and the comprehensive optimization method of the number, size and layout of ribbed slab were putted forward based on the classification of ribbed slab structure. According to the result of the finite element analysis, the internal type and horizontal spacing of ribbed slab are optimized to get the best number, spacing, thickness and height of ribbed slab; Under the required intensity, stiffness and stability conditions materials are distributed reasonably to reduce beam weight which make little deformation and the uniform stress distribution. The comprehensive optimization method study has reference value for ribbed slab structure design.


2016 ◽  
Vol 693 ◽  
pp. 243-250
Author(s):  
Zhi Zhong Guo ◽  
Yun Shun Zhang ◽  
Shi Hao Liu

It is discovered that the vibration resistance of spindle systems needs to be improved based on the statics analysis, modal analysis and heating-force coupling analysis of spindle systems of CNC gantry machine tools. The design variables of optimization are set according to sensitivity analysis, multi-objective and dynamic optimization design is realized and its designing scheme is gained for spindle structure. The research results show that vibration resistance can be improved without change of the quality and static property of spindle systems of CNC gantry machine tools.


2014 ◽  
Vol 945-949 ◽  
pp. 1135-1138
Author(s):  
Tao Liang ◽  
Chun Ling Meng ◽  
Yang Li ◽  
Xiu Hua Zhao

The finite element analysis of large air cooling tower was carried out using ABAQUS. On the basis of strength above,8 types of the axial force are analyzed and summarized, find valuable rules, and put forward the further optimization design. So that it can satisfy the strength and stability of air cooling tower, the structure is more reasonable, reduce weight, reduce the cost.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bin Zheng ◽  
Yi Cai ◽  
Kelun Tang

Purpose The purpose of this paper is to realize the lightweight of connecting rod and meet the requirements of low energy consumption and vibration. Based on the structural design of the original connecting rod, the finite element analysis was conducted to reduce the weight and increase the natural frequencies, so as to reduce materials consumption and improve the energy efficiency of internal combustion engine. Design/methodology/approach The finite element analysis, structural optimization design and topology optimization of the connecting rod are applied. Efficient hybrid method is deployed: static and modal analysis; and structure re-design of the connecting rod based on topology optimization. Findings After the optimization of the connecting rod, the weight is reduced from 1.7907 to 1.4875 kg, with a reduction of 16.93%. The maximum equivalent stress of the optimized connecting rod is 183.97 MPa and that of the original structure is 217.18 MPa, with the reduction of 15.62%. The first, second and third natural frequencies of the optimized connecting rod are increased by 8.89%, 8.85% and 11.09%, respectively. Through the finite element analysis and based on the lightweight, the maximum equivalent stress is reduced and the low-order natural frequency is increased. Originality/value This paper presents an optimization method on the connecting rod structure. Based on the statics and modal analysis of the connecting rod and combined with the topology optimization, the size of the connecting rod is improved, and the static and dynamic characteristics of the optimized connecting rod are improved.


Author(s):  
Jing Han ◽  
Koetsu Yamazaki ◽  
Sadao Nishiyama ◽  
Ryoichi Itoh

This paper has introduced the finite element analysis (FEA) into the ergonomic design to evaluate the human feelings numerically and objectively, and then into the optimization design of beverage containers considering human factors. In the design of the end of can (the lid of can), experiments and the FEA of indenting vertically the fingertip pulp by a probe and the tab of end have been done to observe force responses and to study feelings in the fingertip. A numerical simulation of finger lifting the tab for opening the can has also been performed, and discomfort in the fingertip has been evaluated numerically to present the finger-accessibility of the tab. The comparison of finger-accessibility between two kinds of tab ring shape designs showed that the tab that may have a larger contact area with the finger is better. In the design of beverage bottles served hot drinks, the FEA of tactile sensation of heat has been performed to evaluate numerically the touch feeling of the finger when holding the hot bottle. The numerical simulations of embossing process have also been performed to evaluate the formability of various rib-shape designs. The optimum design has then been done considering the hot touch feeling as well as the metal sheet formability.


2011 ◽  
Vol 121-126 ◽  
pp. 3431-3436
Author(s):  
Guo Quan Yang ◽  
You Qun Zhao ◽  
Jun Yan Li

This paper discussed the theoretical analysis and engineering improvement test verification of the crack problem in the back van of the vehicle. Causes that may result in the crack problem are firstly analyzed and then determined by the finite element analysis. Improvement are given and proved to be effective by the test verification of an improved vehicle. The method used in this paper will contribute to the analysis and solution of the crack problems in some parts of the vehicle and has reference value in engineering application.


2013 ◽  
Vol 710 ◽  
pp. 243-246
Author(s):  
Xian Hong Yang

The use of Pro/E and their respective advantages ANSYS software product design and engineering analysis to solve the case, first of all in the Pro/E, the completion of three-dimensional helical gear design, and then in the Pro/MECHANICA completed finite element model of helical gear, and then into ANSYS for finite element analysis of bevel gear calculation and simulation, finite element analysis of the final results of optimization design model is presented recommendations for improvement. The product design and engineering analysis method has some reference value in engineering design.


Sign in / Sign up

Export Citation Format

Share Document