The Finite Element Analysis and the Multi-Objective Optimization Design of Spindle Systems of CNC Gantry Machine Tools

2016 ◽  
Vol 693 ◽  
pp. 243-250
Author(s):  
Zhi Zhong Guo ◽  
Yun Shun Zhang ◽  
Shi Hao Liu

It is discovered that the vibration resistance of spindle systems needs to be improved based on the statics analysis, modal analysis and heating-force coupling analysis of spindle systems of CNC gantry machine tools. The design variables of optimization are set according to sensitivity analysis, multi-objective and dynamic optimization design is realized and its designing scheme is gained for spindle structure. The research results show that vibration resistance can be improved without change of the quality and static property of spindle systems of CNC gantry machine tools.

2010 ◽  
Vol 156-157 ◽  
pp. 456-461
Author(s):  
Tao Wang ◽  
Song Lin ◽  
Bin Wu ◽  
Chao Xu

Damping capacity and stiffness loss must be considered together in the design of integral damping composite structures. In the present paper, a discrete layer beam finite element is used to model and analyze a damped composite I-beam embedded with viscoelastic layers. Two multi-objective optimization models are developed with maximum natural frequency and modal loss factor. In the first model, only one damping layer is embedded in each flange of the I-beam. Design variables consist of damping layer thickness and its inserting location. In the second model, multiple damping layers of equal thickness are embedded in the flanges. Design variables included the number of damping layers and their inserting locations. Multi-objective genetic algorithm is used to solve optimization problems. It is showed that the analysis method has acceptable accuracy for composite damped I-beams, and it is convenient for optimization design of integral damping composite structures, especially for the cases embedded with multiple damping layers.


2011 ◽  
Vol 243-249 ◽  
pp. 362-365
Author(s):  
Shan Suo Zheng ◽  
Yi Hu ◽  
Qing Lin Tao ◽  
Zhi Qiang Li ◽  
Lei Li

According to the thought of engineering optimization and the theory of composite structure design, the minimum of the project cost and the maximum of the diagonal shear capacity are taken as the optimization objectives whose importance can be adjusted by weighting factors and the linear weighted method is used to establish evaluation function which changes multi-objective into single-objective in optimization. Taking the various constraints into consideration and choosing the sensitive design variables, the mathematical model of the multi-objective optimization design for steel reinforced high-strength concrete beams is provided. Based on the optimization thought of the Complex Method, the nonlinear optimization problems are solved by MATLAB program.


Author(s):  
Xiang Song ◽  
Peixun Yu ◽  
Junqiang Bai ◽  
Xiao Han ◽  
Jiahui Peng

Aiming at the multi-objective optimization design problem of propeller aerodynamics and noise, the three-dimensional geometric deformation of the whole blade is carried out by the free-form surface deformation method based on non-uniform rational B-spline. In order to save the calculation cost of optimization, the RANS method and the Hanson model are combined to predict pure tone noise, and the prediction accuracy is comparable to the accuracy of the FW-H equation coupled with URANS method. Kriging surrogate model and non-dominated sorting genetic algorithm are used to search for optimal value, and a multi-objective optimization design framework for propeller aerodynamics and noise is established. This method is used to optimize the blade shape of a passenger airliner propeller, and the airfoil torsion angle and chord length of different positions are optimized as design variables. Compared with the basic blade, the noise value of the axial monitoring point near the cruise configuration under the wind tunnel experiment condition is reduced by about 0.25 dB at the same time as the power is reduced. In the case of a slight increase in power, the noise is reduced by about 1 dB.


2012 ◽  
Vol 215-216 ◽  
pp. 735-740
Author(s):  
Kui Li ◽  
Yuan Ying Qiu ◽  
Ying Sheng

Aiming at the difficulty with structure and parameter design for a wing analog beam under a large deformation condition, a large-span cantilever truss model with Pro/e is designed. Then a mathematical model of the wing beam based on the Multi-objective Genetic Algorithm is proposed. Thereby the sizing optimization and shape optimization for the wing analog beam are conducted with the finite element analysis and meanwhile two main objectives minimizing the maximum von Mises stress and the mean-square error of the deformation displacement curve fitting are satisfied. A Pareto optimal solution aggregate is obtained after the optimization. Finally an optimal structure is concluded via the multi-objective optimization design, which improves the curve fitting accuracy of the wing and satisfies the stress strength requirement as well.


1992 ◽  
Vol 114 (4) ◽  
pp. 428-432 ◽  
Author(s):  
L. Younsheng ◽  
L. Ji

In this paper, sensitivity analysis for a finite element model during shape optimization design for a pressure vessel is discussed. The derivation is emphatically carried out for the derivatives of stiffness matrix and various load ranks with respect to design variables. Because the information resulting from the finite element analysis is fully utilized in this method, the programs are greatly simplified so that it becomes possible to carry out the shape optimization with comparatively more versatility. The conclusion is illustrated by an example.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 403
Author(s):  
Shuang Wu ◽  
Jiefang Xing ◽  
Ling Dong ◽  
Honjuan Zhu

In order to improve the structural stiffness of the gravure cell structure in the solid printing process and realize a lightweight design, a multi-objective optimization design method was proposed to optimize the parameters of the direct laser engraving of the cell structure. In this paper, based on the characteristics of the cell structure and the analysis of the contact force, the ANSYS parametric design language (APDL) was used to conduct a finite element analysis on the microstructure of the regular hexagonal cell. We found that there is a certain optimization space. Then, a response surface (RSM) method optimization model, using a central composite design (CCD), was established to obtain, and then analyze, the sensitivity of each design variable to the objective functions. Finally, a multi-objective genetic algorithm (MOGA) was used to solve the model. The optimization results show that the maximum deformation was reduced by 44.4%, and the total volume was reduced by 46.3%. By comparing with the model before optimization, the rationality and effectiveness of this method were verified. This shows that the method can be effectively applied to the design optimization of gravure cell microstructure, and it provides theoretical support for new cell design.


2010 ◽  
Vol 44-47 ◽  
pp. 1525-1532 ◽  
Author(s):  
Rui Meng ◽  
Neng Gang Xie ◽  
Xiao Jing Han

Considering helical gear transmission's economic performance and drive reliability, construct multi-objective optimization model of the helical gear transmission with taking normal module, teeth number of small helical gear, helix angle and the gear width coefficient as design variables and taking the volume of small and large helical gear and opposite number of overlap ratio as objective functions. Propose multi-objective optimization design method based on coalition cooperative game theory where the two design goals are seen as two game players. By calculating the impact factor of design variables to objective functions and fuzzy clustering, the design variables are divided into strategy space of game players. Each game player takes its own revenue function as target and does single objective optimization in its own strategy space in order to get its own best strategy. The best strategies of all players form a combination of one round game and the optimal solution can be obtained through several game rounds. Example results show the effectiveness of game method.


2014 ◽  
Vol 578-579 ◽  
pp. 75-82 ◽  
Author(s):  
Fathallah Elsayed ◽  
Hui Qi ◽  
Li Li Tong ◽  
Mahmoud Helal

Due to the wide range of variables involved and sophisticated analysis techniques required, optimum structural design of composite submersible pressure hull is known to be a challenge for designers. The major challenge involved in the coupled design problem is to handle multiple conflicting objectives. The problem with its proper consideration through multi-objective optimization is studied in this paper. Minimize the buoyancy factor and maximize buckling load capacity of the submersible pressure hull under hydrostatic pressure is considered as the objective function to reach the operating depth equal to 6000m. Finite element analysis of composite elliptical submersible pressure hull is performed using ANSYS parametric design language (APDL). The constraints based on the failure strength of the hulls are considered. The fiber orientation angles and the thickness in each layer, the radii of the ellipse, the ring beams and the stringers dimensions are taken as design variables. Additionally, a sensitivity analysis is performed to study the influence of the design variables up on objectives and constraints functions. Results of this study provide a valuable reference for designers of composite underwater vehicles.


2014 ◽  
Vol 663 ◽  
pp. 93-97 ◽  
Author(s):  
F. Djamaluddin ◽  
Shahrum Abdullah ◽  
A.K. Arrifin ◽  
Z.M. Nopiah

This paper presents the multi-objective optimization of aluminum foam double circular tube under oblique load for various load angle and geometry parameters. Thin-walled metallic tubes are used in vehicle structures to absorb impact energy, such as in bumper beams. In this research, aluminum alloy AA6063 T6 foam filled tube which both end were clamped, at bottom as boundary condition and at the top of tube applied quasi-static force of load angle of 0o to 30o with respect to longitudinal direction of tubes. The finite element analysis using ABAQUS code was validated according to the relevant experimental data, and the deformation modes of the tubes were studied. Multi-objective optimization design of crush parameters such as minimum peak crushing force and maximum specific energy absorption were performed using particle swarm optimization algorithm. Different optimal designs for different angles of loading and geometries of double circular tubes was identified.


Sign in / Sign up

Export Citation Format

Share Document