Micromagnetic Simulation of Asymmetrical CoFe Nanorings

2012 ◽  
Vol 538-541 ◽  
pp. 529-533
Author(s):  
Zhen Gang Guo ◽  
Li Qing Pan ◽  
Hong Mei Qiu ◽  
Xue Dan Zhao ◽  
Li Hong Yang

Domain wall motions and magnetization reversal processes in the nanoscale asymmetrical Co50Fe50rings have been studied using micromagnetic simulations. The results reveal that the switching fields and the plateau width of vortex state can be tuned through changing the asymmetrical parameter of magnetic nanorings. The chirality of vortex states can be easily controlled by the orientation of the applied magnetic field.

2018 ◽  
Vol 32 (13) ◽  
pp. 1850156
Author(s):  
Amaresh Chandra Mishra ◽  
R. Giri

The remanent state of elliptical permalloy nanodisks depends on the orientation of the applied magnetic field with respect to the major and minor axes of the nanodisks [A. C. Mishra, Int. J. Mod. Phys. B 30, 1650192 (2016)]. The remanent state is usually an onion state if the external magnetic field is along the major axis, and is a vortex state if the external magnetic field is along the minor axis. In this work, we have analyzed the magnetization reversal of a crossed elliptic disk of permalloy using micromagnetic simulation. This is a new shape where two identical elliptic disks with semi-major axis of length a and semi-minor axis of length b intersect such that they are perpendicular to each other. If the value of b is very close to that of a, then the remanent state is a near saturation state. As the ratio a/b goes down, new complex remanent states are observed. The hysteresis loss is found to be decreased gradually with the increment of b for a given value of b.


2010 ◽  
Vol 1258 ◽  
Author(s):  
Xinghua Wang ◽  
Sarjoosing Goolaup ◽  
Chunxiao Cong ◽  
wensiang Lew

AbstractWe have fabricated sub-100 nm triangles NiFe triangle arrays using NSL and the MOKE measurement and micromagnetic simulations were carried out to investigate the reversal mechanism of the arrays. Enhancement of coercivity compared to the thin film was observed in all the three arrays but in different degree from the MOKE measurement. With the increase of the lateral size of the triangle, the effect of the coercivity enhancing decreases. Micromagnetic simulation shows that instead of domain wall nucleation and annihilation in the thin film, the reversal mechanism of the 45 and 80 nm triangles is dominated by the coherent rotation. While in the 100 nm triangle, the magnetic reversal takes place via forming and reversing a V like sate.


Nanoscale ◽  
2019 ◽  
Vol 11 (42) ◽  
pp. 20102-20114 ◽  
Author(s):  
Vasileios D. Stavrou ◽  
Drosos Kourounis ◽  
Konstantinos Dimakopoulos ◽  
Ioannis Panagiotopoulos ◽  
Leonidas N. Gergidis

The magnetization reversal in magnetic FePt nanoelements having Reuleaux 3D geometry is studied using Finite Element micromagnetic simulations. Multiple skyrmions are formed for a range of external fields and magnetocrystalline anisotropy values.


2021 ◽  
Author(s):  
Igor Yanilkin ◽  
Amir Gumarov ◽  
Gulnaz Gizzatullina ◽  
Roman Yusupov ◽  
Lenar Tagirov

We have investigated the low-temperature magnetoresistive properties of a thin epitaxial Pd0.92Fe0.08 film at different directions of the current and the applied magnetic field. The obtained experimental results are well described within an assumption of a single-domain magnetic state of the film. In a wide range of the appled field directions, the magnetization reversal proceeds in two steps via the intermediate easy axis. An epitaxial heterostructure of two magnetically separated ferromagnetic layers, Pd0.92Fe0.08/Ag/Pd0.96Fe0.04, was synthesized and studied with the dc magnetometry. Its magnetic configuration diagram has been constructed and the conditions have been determined for a controllable switching between stable parallel, orthogonal, and antiparallel arrangements of magnetic moments of the layers.


2020 ◽  
Vol 244 ◽  
pp. 01015
Author(s):  
Fabrice Boust ◽  
Nicolas Vukadinovic

The equilibrium magnetization configurations and the associated microwave susceptibility spectra of dipolar coupled nanoplatelets are explored using three-dimensional (3D) micromagnetic simulations. First, the case of periodic arrangements of nanoplatelets on square arrays is considered. As a result, a macro-vortex state defined as a flux closure pattern spreading over the whole array with or without a vortex core can be stabilized starting from an initial orthoradial magnetization configuration. For macro-vortex states with a vortex core, the linear excitation spectrum exhibits a sub-GHz resonance line ascribed to the vortex core dynamics at the array center. The features of this line (spectral position and amplitude) depend on the array size and the strength of the dipolar coupling through the interplatelet spacing. This resonance is also observed for macro-vortex states without a vortex core but only in the regime of a strong dipolar coupling. The effect of disorder is then investigated by numerically generating assemblies of nanoplatelets with a position disorder and, shape and size distributions. The micromagnetic simulations reveal flux closure magnetization configurations as well but without a vortex core. A low-frequency resonance appears in the susceptibility spectra for quite high surface contents of nanoplatelets but its amplitude is weaker compared to the case of periodic arrays. This line arises from a collective mode extended over a few nanoplatelets. A large variety of static and dynamical behaviors is thus evidenced resulting in a great complexity even in such model systems.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
De Wei Wong ◽  
Wei Liang Gan ◽  
Yuan Kai Teo ◽  
Wen Siang Lew

AbstractA well-established method for treating cancerous tumors is magnetic hyperthermia, which uses localized heat generated by the relaxation mechanism of magnetic nanoparticles (MNPs) in a high-frequency alternating magnetic field. In this work, we investigate the heating efficiency of cylindrical NiFe MNPs, fabricated by template-assisted pulsed electrodeposition combined with differential chemical etching. The cylindrical geometry of the MNP enables the formation of the triple vortex state, which increases the heat generation efficiency by four times. Using time-dependent calorimetric measurements, the specific absorption rate (SAR) of the MNPs was determined and compared with the numerical calculations from micromagnetic simulations and vibrating sample magnetometer measurements. The magnetization reversal of high aspect ratios MNPs showed higher remanent magnetization and low-field susceptibility leading to higher hysteresis losses, which was reflected in higher experimental and theoretical SAR values. The SAR dependence on magnetic field strength exhibited small SAR values at low magnetic fields and saturates at high magnetic fields, which is correlated to the coercive field of the MNPs and a characteristic feature of ferromagnetic MNPs. The optimization of cylindrical NiFe MNPs will play a pivotal role in producing high heating performance and biocompatible magnetic hyperthermia agents.


2004 ◽  
Vol 343 (1-4) ◽  
pp. 369-373 ◽  
Author(s):  
V. Zhukova ◽  
A.P. Zhukov ◽  
N.A. Usov ◽  
J.M. Blanco ◽  
J. González

2021 ◽  
Vol 126 (17) ◽  
Author(s):  
Grzegorz J. Kwiatkowski ◽  
Mohammad H. A. Badarneh ◽  
Dmitry V. Berkov ◽  
Pavel F. Bessarab

Sign in / Sign up

Export Citation Format

Share Document