magnetization reversal process
Recently Published Documents


TOTAL DOCUMENTS

179
(FIVE YEARS 24)

H-INDEX

19
(FIVE YEARS 4)

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5671
Author(s):  
E. Berganza ◽  
J. Marqués-Marchán ◽  
C. Bran ◽  
M. Vazquez ◽  
A. Asenjo ◽  
...  

Magnetic nanowires, conceived as individual building blocks for spintronic devices, constitute a well-suited model to design and study magnetization reversal processes, or to tackle fundamental questions, such as the presence of topologically protected magnetization textures under particular conditions. Recently, a skyrmion-tube mediated magnetization reversal process was theoretically reported in diameter modulated cylindrical nanowires. In these nanowires, a vortex nucleates at the end of the segments with larger diameter and propagates, resulting in a first switching of the nanowire core magnetization at small fields. In this work, we show experimental evidence of the so-called Bloch skyrmion-tubes, using advanced Magnetic Force Microscopy modes to image the magnetization reversal process of FeCoCu diameter modulated nanowires. By monitoring the magnetic state of the nanowire during applied field sweeping, a detected drop of magnetic signal at a given critical field unveils the presence of a skyrmion-tube, due to mutually compensating stray field components. That evidences the presence of a skyrmion-tube as an intermediate stage during the magnetization reversal, whose presence is related to the geometrical dimensions of the cylindrical segments.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4680
Author(s):  
Jun Ma ◽  
Xiaotian Zhao ◽  
Wei Liu ◽  
Yang Li ◽  
Long Liu ◽  
...  

In this study, the magnetic properties, coercivity mechanism, and magnetization reversal process were investigated for Ce-(Y)-Pr-Fe-B films. After the addition of Y and subsequent heating treatment, the formations of REO (RE ≡ Ce and Pr) and REFe2 (RE ≡ rare earths) phases are inhibited, and the microstructure of Ce-Y-Pr-Fe-B film is optimized. Meanwhile, the coercivity and the squareness of the hysteresis loop are significantly improved. The coercivity mechanism of Ce-Y-Pr-Fe-B film is determined to be a mixture of nucleation and pinning mechanisms, but dominated by the nucleation mechanism. The demagnetization results show that the nucleation of reversal magnetic domains leads to irreversible reversal. Our results are helpful to understand the coercivity mechanism and magnetization reversal of permanent magnetic films with multi-main phases.


2021 ◽  
Vol 6 (2) ◽  
pp. 17
Author(s):  
Emre Öncü ◽  
Andrea Ehrmann

Square magnetic nanodots can show intentional or undesired shape modifications, resulting in superellipses with concave or convex edges. Some research groups also concentrated on experimentally investigating or simulating concave nano-superellipses, sometimes called magnetic astroids due to their similarity to the mathematical shape of an astroid. Due to the strong impact of shape anisotropy in nanostructures, the magnetization-reversal process including coercive and reversibility fields can be expected to be different in concave or convex superellipses than that in common squares. Here, we present angle-dependent micromagnetic simulations on magnetic nanodots with the shape of concave superellipses. While magnetization reversal occurs via meander states, horseshoe states or the 180° rotation of magnetization for the perfect square, depending on the angle of the external magnetic field, more complicated states occur for superellipses with strong concaveness. Even apparently asymmetric hysteresis loops can be found along the hard magnetization directions, which can be attributed to measuring minor loops since the reversibility fields become much larger than the coercive fields.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Łukasz Frąckowiak ◽  
Feliks Stobiecki ◽  
Gabriel David Chaves-O’Flynn ◽  
Maciej Urbaniak ◽  
Marek Schmidt ◽  
...  

AbstractRecent results showed that the ferrimagnetic compensation point and other characteristic features of Tb/Co ferrimagnetic multilayers can be tailored by He+ ion bombardment. With appropriate choices of the He+ ion dose, we prepared two types of lattices composed of squares with either Tb or Co domination. The magnetization reversal of the first lattice is similar to that seen in ferromagnetic heterostructures consisting of areas with different switching fields. However, in the second lattice, the creation of domains without accompanying domain walls is possible. These domain patterns are particularly stable because they simultaneously lower the demagnetizing energy and the energy associated with the presence of domain walls (exchange and anisotropy). For both lattices, studies of magnetization reversal show that this process takes place by the propagation of the domain walls. If they are not present at the onset, the reversal starts from the nucleation of reversed domains and it is followed by domain wall propagation. The magnetization reversal process does not depend significantly on the relative sign of the effective magnetization in areas separated by domain walls.


2020 ◽  
Vol 512 ◽  
pp. 167045
Author(s):  
Guidobeth Sáez ◽  
Eduardo Cisternas ◽  
Pablo Díaz ◽  
Eugenio E. Vogel ◽  
Juan Pablo Burr ◽  
...  

2020 ◽  
Author(s):  
Qianqian Lan ◽  
András Kovács ◽  
Jan Caron ◽  
Hongchu Du ◽  
Dongsheng Song ◽  
...  

Abstract The hierarchical microstructures of high-entropy alloys (HEAs) can result in highly complex magnetic textures and properties. Here, we use high spatial resolution correlative magnetic, structural and chemical imaging to investigate magnetic textures in phase separated AlCoxCr1 – xFeNi (x = 0.5 and 1) HEAs. The AlCoFeNi HEA, which contains nm-sized A2 precipitates in a B2 matrix, supports large magnetic domains with small-angle magnetization variations. In contrast, the AlCo(Cr)FeNi HEA, which undergoes hierarchical phase separation, contains an unexpected distribution of magnetic vortices within individual A2 precipitates in a weakly ferromagnetic B2 host, in addition to weakly ferromagnetic or nonmagnetic B2 precipitates in large magnetic domains of the A2 phase, as well as Fe-Co-rich inter-phase A2 regions that have strong magnetization. The coercivity is attributed to a complicated magnetization reversal process, which includes the successive reversal of the magnetic vortices. These results provide important insight for the rational design of HEAs with unique and tailored magnetic properties.


Sign in / Sign up

Export Citation Format

Share Document