Differential Pulse Voltammetry Method for the Determination of Glucose on Multi-Nanostructured Active Electrode Modified by Platinum Nanoparticles

2012 ◽  
Vol 554-556 ◽  
pp. 440-444
Author(s):  
He Zhen Wu ◽  
Aie Cao ◽  
Di Lou Xu ◽  
Dao Bao Chu

Electrocatalytic oxidation of multi-nanostructured active electrode modified by platinum nanoparticles on glucose was examined. Based on 0.5mol/L KOH solution, we see a sensitive and good-shaped oxidation peak current near -0.77V (VS, SCE) by using differential pulse voltammetry method to scan in the range of -0.9~0.4V.The peak is regarded as the quantitative peak. There is a good linear relationship between glucose concentration and the peak current in the range of 1.0×10-2~1.0×10-5 mol/L. The linear correlation coefficient is 0.99864.The detection limit is 1.0×10-6mol/L. If added 0.06 m mol/L ascorbic acid or 0.3m mol/L uric acid (simulating human blood components), the determination of glucose is not interfered with. Results of the determination of glucose concentration in the blood are satisfactory.

2022 ◽  
Vol 905 ◽  
pp. 204-209
Author(s):  
Nan Dong ◽  
Ke Cao ◽  
Chen Xi Si ◽  
Dan Zheng

In this work, core–shell structured nanocomposites consisting of Pd doped Ag@C were synthesized by impregnation–reduction method. Then, sensing electrodes were fabricated by modifying Pd/Ag@C core-shell nanoparticles on screen-printed electrodes (SPE) for electrochemical determination of bisphenol A (BPA). The composition and morphology of nanocomposites were characterized by scanning electron microscopy, transmission electron microscopy, X ray diffraction and energy-dispersive X-ray spectroscopy. The electrochemical response characteristics of nanocomposites to BPA was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results indicated that, compared with Ag@C and Pd/C, Pd/Ag@C nanocomposite shows greater catalytic activity to the oxidation of BPA due to the synergistic effect of Pd and Ag. Among the four synthesized Pd/Ag@C-x (x=1-4) nanomaterials, the Pd/Ag@C-3 exhibits the best sensing performance toward the sensitive detection of BPA. The linear range for BPA determination was from 8.0×10-8 M to 1.5×10-5M with a detection limit of 1.0×10-8 M. A less than 9% oxidation peak current change was observed on the determination of BPA using Pd/Ag@C-3/SPE when added different interfering species into the BPA solution. The oxidation peak current attenuation of BPA on Pd/Ag@C-3/SPE within five weeks was found to be less than 3.6%.


1984 ◽  
Vol 49 (5) ◽  
pp. 1282-1288 ◽  
Author(s):  
Věra Stará ◽  
Miloslav Kopanica

The herbicide methomyl (2-methylthio-propionaldehyde-o-methylcarbamoyloxime) can be determined using fast scan differential pulse voltammetry with hanging mercury drop electrode by the measurement of the peak at -1.30 V (S.C.E.) which caused by the presence of methomyl in the ammoniacal buffer solution containing cobalt(II) salt. The peak current vs methomyl concentration dependence is linear over the concentration range 0.5 to 20.0 μg . l-1. The herbicide aldicarb (2-methyl-2(methylthio)propionaldehyde-o-methylcarbamoyloxime) is determined by its influence on the differential pulse voltammetric curve of copper(II) recorded in electrochemically enriched solution in acidic medium. The corresponding peak current at the potential + 0.08 V (S.C.E.) depends linearly on the aldicarb concentration in the range 0.07 to 5.00 μg ml-1.


2015 ◽  
Vol 7 (2) ◽  
pp. 643-649 ◽  
Author(s):  
Luiz C. S. Figueiredo-Filho ◽  
Elen R. Sartori ◽  
O. Fatibello-Filho

The determination of linuron using differential-pulse voltammetry (DPV) and a cathodically pretreated boron-doped diamond electrode is proposed.


1986 ◽  
Vol 51 (11) ◽  
pp. 2466-2472 ◽  
Author(s):  
Jiří Barek ◽  
Antonín Berka ◽  
Ludmila Dempírová ◽  
Jiří Zima

Conditions were found for the determination of 6-mercaptopurine (I) and 6-thioguanine (II) by TAST polarography, differential pulse polarography and fast-scan differential pulse voltammetry at a hanging mercury drop electrode. The detection limits were 10-6, 8 . 10-8, and 6 . 10-8 mol l-1, respectively. A further lowering of the detection limit to 2 . 10-8 mol l-1 was attained by preliminary accumulation of the determined substances at the surface of a hanging mercury drop.


1991 ◽  
Vol 56 (3) ◽  
pp. 595-601 ◽  
Author(s):  
Jiří Barek ◽  
Gulamustafa Malik ◽  
Jiří Zima

Optimum conditions were found for the determination of 4-nitrobiphenyl by fast scan differential pulse voltammetry at a hanging mercury drop electrode in the concentration range 1 . 10-5 to 2 . 10-7 mol l-1. A further increase in sensitivity was attained by adsorptive accumulation of this substance on the surface of the working electrode, permitting determination in the concentration range (2 – 10) . 10-8 mol l-1 with one minute accumulation of the substance in unstirred solution or (2 – 10) . 10-9 mol l-1 with three-minute accumulation in stirred solution. Linear scan voltammetry can be used to determine 4-nitrobiphenyl in the concentration range (2 – 10) . 10-9 mol l-1 with five-minute accumulation in stirred solution, with the advantage of a smoother baseline and smaller interference from substances that yield only tensametric peaks.


2021 ◽  
Author(s):  
Yan Jin ◽  
Tong QI ◽  
Yuqing Ge ◽  
Jin Chen ◽  
Li juan Liang ◽  
...  

In this paper, ultrasensitive electrochemical determination of phosphate in water is achieved by hydrophilic TiO2 modified glassy carbon electrodes for the first time. Differential pulse voltammetry (DPV) method is proposed...


Sign in / Sign up

Export Citation Format

Share Document