Convenient Partial Purification of Glucose Oxidase from Aspergillus niger A9 Fermentation Broth by Reversed Micelles

2012 ◽  
Vol 554-556 ◽  
pp. 957-961
Author(s):  
Hong An ◽  
Xi Feng He ◽  
Shu Gang Gao

Aim of this work was to establish the optimum conditions for the extraction and recovery by cationic reversed micelles of glucose oxidase (GOX) from Aspergillus niger A9, The influence of pH, temperature, solvent/co-solvents ratio on the extraction was investigated by experiment, using the residual enzyme activity to evaluate the results. The best condition for GOX extraction were ensured using iso-octane as solvent and butanol and n-hexanol co-solvent at 76/18/6 volume ratio, pH 4.80, 200mM cetyl-trimethyl ammonium bromide (CTAB) as cationic surfactant, The enzyme activity of GOX is measured by DNS method (3,5-dinitro salicylic acid method). In the extraction process, ultrasonic oscillation was adopted to mix organic solvent and water, ultrasonic oscillation temperature is 45 °C. Protein activity recovery of GOX can reach 88.2% in extraction.

2008 ◽  
Vol 21 (3) ◽  
pp. 868-874 ◽  
Author(s):  
Luis Fernando Peffi Ferreira ◽  
Maria Elena Taqueda ◽  
Attilio Converti ◽  
Michele Vitolo ◽  
Adalberto Pessoa

2019 ◽  
Vol 15 (3) ◽  
Author(s):  
Trismillah

Cavendish banana peel can be used as a substitute for the expensive xylan, while molasses than as a source of carbon as well as nitrogen, minerals and nutrients needed for the growth of microbes that can produce the enzyme. Xylanase produced from Bacillus stearothermopillus DSM 22, using media cavendish banana peels with the addition of molasses 1%, 2%, and 3%. Fermentation is done in a shaker incubator at 550C temperature conditions, initial pH 8, and 250 rpm agitation. The result showed the highest enzyme activity of 4,14 ± 0,16 U/mL min., on the addition 2% molasses after 24 hours. Further fermentation carried out in the fermenter working volume of 3.5 liters, with the condition of temperature 550C, pH 8, aeration 1 vvm, agitation 250 rpm, the highest spesific enzyme of activity of 51,62 ± 0,16 U/mg after 24 hours. Partial purification of xylanase enzyme fermentation is done with the results of microfiltration, ultrafiltration, ammonium sulfate (0-80%) and dialysis. There is an increase in the purity of the enzyme at each stage of purification, the highest purity on dialysis 3.23 times of crude enzymes.Kulit buah pisang kapendis dapat digunakan sebagai pengganti xilan yang harganya mahal, sementara molases selain sebagai sumber karbon serta nitrogen, mineral dan nutrisi dibutuhkan untuk pertumbuhan mikroba yang dapat menghasilkan enzim. Xilanase yang dihasilkan dari Bacillus stearothermopillus DSM 22, menggunakan media kulit pisang kapendis dengan penambahan molase 1%, 2%, dan 3%. Fermentasi dilakukan dalam shaker inkubator pada temperatur 550C, pH awal 8, dan agitasi 250 rpm. Hasilnya menunjukkan aktivitas enzim tertinggi 4,14 ± 0,16 U/mL min., pada penambahan 2% molases setelah 24 jam. Selanjutnya fermentasi dilakukan di dalam fermentor, volume kerja dari 3,5 liter, dengan kondisi temperatur 550C, pH 8, aeration 1 vvm, agitasi 250 rpm, aktivitas spesifik tertinggi 51,62 ± 0,16 U/mg setelah 24 jam. Pemurnian parsial fermentasi enzim xilanase dilakukan dengan hasil mikrofiltrasi, ultrafiltrasi, amonium sulfat (0-80%) dan dialisis. Ada peningkatan kemurnian enzim pada setiap tahap pemurnian, kemurnian tertinggi pada dialisis 3,23 kali dari enzim kasar.Keywords: Xylanase, B. stearothermophillus DSM 22, Cavendish banana peel, molasses, enzyme activity


2001 ◽  
Vol 32 (1) ◽  
pp. 16-19 ◽  
Author(s):  
J.-Z. Liu ◽  
Y.-Y. Huang ◽  
J. Liu ◽  
L.-P. Weng ◽  
L.-N. Ji

1991 ◽  
pp. 209-212
Author(s):  
Christoph Sanner ◽  
Peter Macheroux ◽  
Heinz Rüterjans ◽  
Franz Müller ◽  
Adalbert Bacher

Author(s):  
Soad A. Abdelgalil ◽  
Ahmad R. Attia ◽  
Reyed M. Reyed ◽  
Nadia A. Soliman

Abstract Background Due to the multitude industrial applications of ligninolytic enzymes, their demands are increasing. Partial purification and intensive characterization of contemporary highly acidic laccase enzyme produced by an Egyptian local isolate designated Alcaligenes faecalis NYSO were studied in the present investigation. Results Alcaligenes faecalis NYSO laccase has been partially purified and intensively biochemically characterized. It was noticed that 40–60% ammonium sulfate saturation showed maximum activity. A protein band with an apparent molecular mass of ~ 50 kDa related to NYSO laccase was identified through SDS-PAGE and zymography. The partially purified enzyme exhibited maximum activity at 55 °C and pH suboptimal (2.5–5.0). Remarkable activation for enzyme activity was recognized after 10-min exposure to temperatures (T) 50, 60, and 70 °C; time elongation caused inactivation, where ~ 50% of activity was lost after a 7-h exposure to 60 °C. Some metal ions Cu2+, Zn2+, Co2+, Ni2+, Mn2+, Cd2+, Cr2+, and Mg2+ caused strong stimulation for enzyme activity, but Fe2+ and Hg2+ reduced the activity. One millimolar of chelating agents [ethylenediamine tetraacetic acid (EDTA), sodium citrate, and sodium oxalate] caused strong activation for enzyme activity. Sodium dodecyl sulfate (SDS), cysteine-HCl, dithiothreitol (DTT), β-mercaptoethanol, thioglycolic acid, and sodium azide caused strong inhibition for NYSO laccase activity even at low concentration. One millimolar of urea, imidazole, kojic acid, phenylmethylsulfonyl fluoride (PMSF), H2O2, and Triton X-100 caused activation. The partially purified NYSO laccase had decolorization activity towards different dyes such as congo red, crystal violet, methylene blue, fast green, basic fuchsin, bromophenol blue, malachite green, bromocresol purple eriochrome black T, and Coomassie Brilliant Blue R-250 with various degree of degradation. Also, it had a vast range of substrate specificity including lignin, but with high affinity towards p-anisidine. Conclusion The promising properties of the newly studied laccase enzyme from Alcaligenes faecalis NYSO strain would support several industries such as textile, food, and paper and open the possibility for commercial use in water treatment. It will also open the door to new applications due to its ligninolytic properties in the near future.


2002 ◽  
Vol 31 (5) ◽  
pp. 615-620 ◽  
Author(s):  
J. Mirón ◽  
M.P. González ◽  
L. Pastrana ◽  
M.A. Murado

1993 ◽  
Vol 24 (5) ◽  
pp. 408-416 ◽  
Author(s):  
Cor F. B. Witteveen ◽  
Peter J. I. van de Vondervoort ◽  
Hetty C. van den Broeck ◽  
Frank A. C. van Engelenburg ◽  
Leo H. de Graaff ◽  
...  

1992 ◽  
Vol 288 (2) ◽  
pp. 475-482 ◽  
Author(s):  
I Ishii-Karakasa ◽  
H Iwase ◽  
K Hotta ◽  
Y Tanaka ◽  
S Omura

For the purification of a new type of endo-alpha-N-acetylgalactosaminidase from the culture medium of Streptomyces sp. OH-11242 (endo-GalNAc-ase-S) [Iwase, Ishii, Ishihara, Tanaka, Omura & Hotta (1988) Biochem. Biophys. Res. Commun. 151, 422-428], a method for assaying enzyme activity was established. Using purified pig gastric mucus glycoprotein (PGM) as the substrate, oligosaccharides liberated from PGM were pyridylaminated, and the reducing terminal sugars of oligosaccharides larger than Gal beta 1-3GalNAc were analysed by h.p.1.c. The crude enzyme of endo-GalNAc-ase-S was prepared as an 80% (w/v) ammonium sulphate precipitate from the concentrated culture medium. The enzyme was partially purified by gel chromatofocusing and subsequent DEAE-Toyopearl chromatography. Endo-enzyme activity eluted around pI 4.8 on a gel chromatofocusing column and eluted with 0.19-0.25 M-NaCl on a DEAE-Toyopearl column. In the enzyme fraction obtained, no exo-glycosidases or proteases could be detected. The molecular mass of the enzyme was estimated as 105 kDa by gel filtration, and the optimum pH was 5.5. Endo-GalNAc-ase-S hydrolysed the O-glycosidic linkage between GalNAc and Ser (Thr) in 3H-labelled and unlabelled asialofetuin, liberating both the disaccharide (Gal beta 1-3GalNAc) and the tetrasaccharide [Gal beta 1-3 (Gal beta 1-4GlcNAc beta 1-6)GalNAc]. When endo-alpha-N-acetylgalactosaminidase from Alcaligenes sp. (endo-GalNac-ase-A) was incubated with 3H-labelled and unlabelled asialofetuin, only the disaccharide (Gal beta 1-3GalNAc) was liberated.


Sign in / Sign up

Export Citation Format

Share Document