Pengaruh Penambahan Molases Pada Kulit Pisang Kapendis Untuk Media Produksi Xilanase B.Stearothermophillus DSM 22

2019 ◽  
Vol 15 (3) ◽  
Author(s):  
Trismillah

Cavendish banana peel can be used as a substitute for the expensive xylan, while molasses than as a source of carbon as well as nitrogen, minerals and nutrients needed for the growth of microbes that can produce the enzyme. Xylanase produced from Bacillus stearothermopillus DSM 22, using media cavendish banana peels with the addition of molasses 1%, 2%, and 3%. Fermentation is done in a shaker incubator at 550C temperature conditions, initial pH 8, and 250 rpm agitation. The result showed the highest enzyme activity of 4,14 ± 0,16 U/mL min., on the addition 2% molasses after 24 hours. Further fermentation carried out in the fermenter working volume of 3.5 liters, with the condition of temperature 550C, pH 8, aeration 1 vvm, agitation 250 rpm, the highest spesific enzyme of activity of 51,62 ± 0,16 U/mg after 24 hours. Partial purification of xylanase enzyme fermentation is done with the results of microfiltration, ultrafiltration, ammonium sulfate (0-80%) and dialysis. There is an increase in the purity of the enzyme at each stage of purification, the highest purity on dialysis 3.23 times of crude enzymes.Kulit buah pisang kapendis dapat digunakan sebagai pengganti xilan yang harganya mahal, sementara molases selain sebagai sumber karbon serta nitrogen, mineral dan nutrisi dibutuhkan untuk pertumbuhan mikroba yang dapat menghasilkan enzim. Xilanase yang dihasilkan dari Bacillus stearothermopillus DSM 22, menggunakan media kulit pisang kapendis dengan penambahan molase 1%, 2%, dan 3%. Fermentasi dilakukan dalam shaker inkubator pada temperatur 550C, pH awal 8, dan agitasi 250 rpm. Hasilnya menunjukkan aktivitas enzim tertinggi 4,14 ± 0,16 U/mL min., pada penambahan 2% molases setelah 24 jam. Selanjutnya fermentasi dilakukan di dalam fermentor, volume kerja dari 3,5 liter, dengan kondisi temperatur 550C, pH 8, aeration 1 vvm, agitasi 250 rpm, aktivitas spesifik tertinggi 51,62 ± 0,16 U/mg setelah 24 jam. Pemurnian parsial fermentasi enzim xilanase dilakukan dengan hasil mikrofiltrasi, ultrafiltrasi, amonium sulfat (0-80%) dan dialisis. Ada peningkatan kemurnian enzim pada setiap tahap pemurnian, kemurnian tertinggi pada dialisis 3,23 kali dari enzim kasar.Keywords: Xylanase, B. stearothermophillus DSM 22, Cavendish banana peel, molasses, enzyme activity

2013 ◽  
Vol 10 (2) ◽  
pp. 29
Author(s):  
Normah Ismail ◽  
Nur' Ain Mohamad Kharoe

Unripe and ripe bilimbi (Averrhoa bilimbi L.) were ground and the extracted juices were partially purified by ammonium sulfate precipitation at the concentrations of 40 and 60% (w/v). The collected proteases were analysed for pH, temperature stability, storage stability, molecular weight distribution, protein concentration and protein content. Protein content of bilimbi fruit was 0.89 g. Protease activity of both the unripe and ripe fruit were optimum at pH 4 and 40°C when the juice were purified at 40 and 60% ammonium sulfate precipitation. A decreased in protease activity was observed during the seven days of storage at 4°C. Molecular weight distribution indicated that the proteases protein bands fall between IO to 220 kDa. Protein bands were observed at 25, 50 and 160 kDa in both the unripe and ripe bilimbi proteases purified with 40% ammonium sulfate, however, the bands were more intense in those from unripe bilimbi. No protein bands were seen in proteases purified with 60% ammonium sulfate. Protein concentration was higher for proteases extracted with 40% ammonium sulfate at both ripening stages. Thus, purification using 40% ammonium sulfate precipitation could be a successful method to partially purify proteases from bilimbi especially from the unripe stage. 


Author(s):  
Soad A. Abdelgalil ◽  
Ahmad R. Attia ◽  
Reyed M. Reyed ◽  
Nadia A. Soliman

Abstract Background Due to the multitude industrial applications of ligninolytic enzymes, their demands are increasing. Partial purification and intensive characterization of contemporary highly acidic laccase enzyme produced by an Egyptian local isolate designated Alcaligenes faecalis NYSO were studied in the present investigation. Results Alcaligenes faecalis NYSO laccase has been partially purified and intensively biochemically characterized. It was noticed that 40–60% ammonium sulfate saturation showed maximum activity. A protein band with an apparent molecular mass of ~ 50 kDa related to NYSO laccase was identified through SDS-PAGE and zymography. The partially purified enzyme exhibited maximum activity at 55 °C and pH suboptimal (2.5–5.0). Remarkable activation for enzyme activity was recognized after 10-min exposure to temperatures (T) 50, 60, and 70 °C; time elongation caused inactivation, where ~ 50% of activity was lost after a 7-h exposure to 60 °C. Some metal ions Cu2+, Zn2+, Co2+, Ni2+, Mn2+, Cd2+, Cr2+, and Mg2+ caused strong stimulation for enzyme activity, but Fe2+ and Hg2+ reduced the activity. One millimolar of chelating agents [ethylenediamine tetraacetic acid (EDTA), sodium citrate, and sodium oxalate] caused strong activation for enzyme activity. Sodium dodecyl sulfate (SDS), cysteine-HCl, dithiothreitol (DTT), β-mercaptoethanol, thioglycolic acid, and sodium azide caused strong inhibition for NYSO laccase activity even at low concentration. One millimolar of urea, imidazole, kojic acid, phenylmethylsulfonyl fluoride (PMSF), H2O2, and Triton X-100 caused activation. The partially purified NYSO laccase had decolorization activity towards different dyes such as congo red, crystal violet, methylene blue, fast green, basic fuchsin, bromophenol blue, malachite green, bromocresol purple eriochrome black T, and Coomassie Brilliant Blue R-250 with various degree of degradation. Also, it had a vast range of substrate specificity including lignin, but with high affinity towards p-anisidine. Conclusion The promising properties of the newly studied laccase enzyme from Alcaligenes faecalis NYSO strain would support several industries such as textile, food, and paper and open the possibility for commercial use in water treatment. It will also open the door to new applications due to its ligninolytic properties in the near future.


1992 ◽  
Vol 288 (2) ◽  
pp. 475-482 ◽  
Author(s):  
I Ishii-Karakasa ◽  
H Iwase ◽  
K Hotta ◽  
Y Tanaka ◽  
S Omura

For the purification of a new type of endo-alpha-N-acetylgalactosaminidase from the culture medium of Streptomyces sp. OH-11242 (endo-GalNAc-ase-S) [Iwase, Ishii, Ishihara, Tanaka, Omura & Hotta (1988) Biochem. Biophys. Res. Commun. 151, 422-428], a method for assaying enzyme activity was established. Using purified pig gastric mucus glycoprotein (PGM) as the substrate, oligosaccharides liberated from PGM were pyridylaminated, and the reducing terminal sugars of oligosaccharides larger than Gal beta 1-3GalNAc were analysed by h.p.1.c. The crude enzyme of endo-GalNAc-ase-S was prepared as an 80% (w/v) ammonium sulphate precipitate from the concentrated culture medium. The enzyme was partially purified by gel chromatofocusing and subsequent DEAE-Toyopearl chromatography. Endo-enzyme activity eluted around pI 4.8 on a gel chromatofocusing column and eluted with 0.19-0.25 M-NaCl on a DEAE-Toyopearl column. In the enzyme fraction obtained, no exo-glycosidases or proteases could be detected. The molecular mass of the enzyme was estimated as 105 kDa by gel filtration, and the optimum pH was 5.5. Endo-GalNAc-ase-S hydrolysed the O-glycosidic linkage between GalNAc and Ser (Thr) in 3H-labelled and unlabelled asialofetuin, liberating both the disaccharide (Gal beta 1-3GalNAc) and the tetrasaccharide [Gal beta 1-3 (Gal beta 1-4GlcNAc beta 1-6)GalNAc]. When endo-alpha-N-acetylgalactosaminidase from Alcaligenes sp. (endo-GalNac-ase-A) was incubated with 3H-labelled and unlabelled asialofetuin, only the disaccharide (Gal beta 1-3GalNAc) was liberated.


2012 ◽  
Vol 554-556 ◽  
pp. 957-961
Author(s):  
Hong An ◽  
Xi Feng He ◽  
Shu Gang Gao

Aim of this work was to establish the optimum conditions for the extraction and recovery by cationic reversed micelles of glucose oxidase (GOX) from Aspergillus niger A9, The influence of pH, temperature, solvent/co-solvents ratio on the extraction was investigated by experiment, using the residual enzyme activity to evaluate the results. The best condition for GOX extraction were ensured using iso-octane as solvent and butanol and n-hexanol co-solvent at 76/18/6 volume ratio, pH 4.80, 200mM cetyl-trimethyl ammonium bromide (CTAB) as cationic surfactant, The enzyme activity of GOX is measured by DNS method (3,5-dinitro salicylic acid method). In the extraction process, ultrasonic oscillation was adopted to mix organic solvent and water, ultrasonic oscillation temperature is 45 °C. Protein activity recovery of GOX can reach 88.2% in extraction.


Author(s):  
Lavinel G. IONESCU

The larvae of the Beetle Dermestes maculatus De Geer can subsist on a diet consisting largely of protein. Studies have been undertaken to investigate the nature of proteolytic enzymes. A water extract of the larvae yielded a crude preparation that hydrolyzes gelatin, bide powder, hemoglobin substrate, benzoyl-DL-arginine p-nitroamilide, and glutaryl-L-phenylalanine p-nitroanilide. Enzyme activity was found in a non-dialyzable, heat- and acid0labile portion of the extract yielded two fractions with high specific activity towards gelatin. These are precipitated between 40% to 60% saturation of ammonium sulfate and 60% to 80% saturation. The higher specific activity was observed in the 40%-60% fraction. These results suggest that the larvae of these dermestids contain proteolytic enzymes with actions similar to mammalian trypsin and chymotrypsin. The results also suggest that other proteolytic enzymes may be present as well.


2017 ◽  
Vol 63 (01) ◽  
pp. 47-53
Author(s):  
Irina Mladenoska ◽  
Verica Petkova ◽  
Tatjana Kadifkova Panovska

The effect of substrate concentration on the enzyme activity in the reaction of glucose conversion into gluconic acid was investigated by using three different enzyme preparations in media with two different glucose concentrations. The media were simulating the conditions in the must, thus named as minimal model must, and were composed form combination of several organic acids and glucose. Those media were having initial pH of 3.5 that is a very unfavorable for glucose oxidase activity having a pH optimum at the pH value of 5.5. Among the three preparations used, the bakery additive, Alphamalt Gloxy 5080, was the most active in the medium with glucose concentration of 10 g/L, showing conversion of more than 70% for the period of 24 h, while the same enzyme preparation in the medium with 100 g/L glucose converted only about 7% of glucose. The pH value of the medium at the beginning and at the end of the enzymatic reaction was a good indicator of the enzyme activity. It seems that for the conversion of glucose in higher concentration, enzymatic preparation in high concentration should also be used. The preliminary attempt of immobilization of two preparations of glucose oxidases in alginate beads was also performed and a successful immobilization procedure for utilization in food industry was preliminarily developed. Keywords: glucose oxidases, enzymatic pretreatment, glucose, gluconic acid, model wine, functional food


2013 ◽  
Vol 27 (3) ◽  
pp. 445-447 ◽  
Author(s):  
Jared M. Roskamp ◽  
William G. Johnson

Saflufenacil solubility and efficacy has been shown to be influenced by carrier water pH. This research was conducted to determine if altering the pH of a solution already containing saflufenacil would influence the efficacy of the herbicide. Saflufenacil at 25 g ai ha−1was applied to field corn in carrier water with one of five initial pH levels (4.0, 5.2, 6.5, 7.7, or 9.0) and then buffered to one of four final solution pH levels (4.0, 6.5, 9.0, or none) for a total of twenty treatments. All treatments included ammonium sulfate at 20.37 g L−1and methylated seed oil at 1% v/v. Generally, saflufenacil with a final solution pH of 6.5 or higher provided more dry weight reduction of corn than saflufenacil applied in a final pH of 5.2 or lower. When applying saflufenacil in water with an initial pH of 4.0 or 5.2, efficacy was increased by raising the final solution pH to either 6.5 or 9.0. Conversely, reduction in corn dry weight was less when solution pH of saflufenacil mixed in carrier water with an initial pH of 6.5 or 7.7 was lowered to a final pH of 4.0. When co-applying saflufenacil with herbicides that are very acidic, such as glyphosate, efficacy of saflufenacil may be reduced if solution pH is 5.2 or lower.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Hanaa H. Abd El Baky ◽  
Gamal S. El Baroty

L-asparaginase (L-AsnA) is widely distributed among microorganisms and has important applications in medicine and in food technology sectors. Therefore, the ability of the production, purification, and characterization of AsnA fromSpirulina maxima(SM) were tested. SM cultures grown in Zarrouk medium containing different N2(in NaNO3form) concentrations (1.25, 2.50, and 5.0 g/L) for 18 days contained a significant various quantity of dry biomass yields and AsnA enzyme levels. MS L-AsnA activity was found to be directly proportional to the N2concentration. The cultures of SM at large scales (300 L medium, 5 g/L N2) showed a high AsnA enzyme activity (898 IU), total protein (405 mg/g), specific enzyme activity (2.21 IU/mg protein), and enzyme yield (51.28 IU/L) compared with those in low N2cultures. The partial purification of crude MS AsnA enzyme achieved by 80% ammonium sulfate AS precipitated and CM-Sephadex C-200 gel filtration led to increases in the purification of enzyme with 5.28 and 10.91 times as great as that in SM crude enzymes. Optimum pH and temperature of purified AsnA for the hydrolyzate were 8.5 and 37 ± 0.2°C, respectively. To the best of our knowledge, this is the first report on L-asparaginase production inS. maxima.


1989 ◽  
Vol 35 (4) ◽  
pp. 499-507 ◽  
Author(s):  
Biswarup Mukhopadhyay ◽  
Lacy Daniels

The N5,N10-methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum strain Marburg has been purified with reasonable yield and much higher specific activity than previously reported. For the first time it has been shown that both N5,N10-methylenetetrahydromethanopterin dehydrogenase and N5,N10-methenyltetrahydromethanopterin cyclohydrolase activities were stable under air and could be purified using aerobic operations. The dehydrogenase activity from Methanobacterium thermoautotrophicum Marburg was stable in phosphate buffer with or without glycerol or ammonium sulfate under both aerobic and anaerobic conditions. However, the presence of either 2-mercaptoethanol or dithiothreitol in the enzyme solution destroyed the enzyme activity during both aerobic and anaerobic incubations. Dehydrogenase was purified 62-fold using Phenyl-Sepharose and DEAE-Sephadex chromatography in succession under air. Both of these chromatographic methods separated dehydrogenase activity from N5,N10-methenyltetrahydromethanopterin cyclohydrolase; DEAE-Sephadex provided the best separation. Phenyl-Sepharose chromatography of the supernatant of cell extracts containing ammonium sulfate at 60% of saturation provided a 4.7-fold purification and 98% recovery of cyclohydrolase; this result established the air stability of N5,N10-methenyltetrahydromethanopterin cyclohydrolase from Methanobacterium thermoautotrophicum Marburg.Key words: methylenetetrahydromethanopterin dehydrogenase, methenyltetrahydromethanopterin cyclohydrolase, Methanobacterium, aerobic purification, oxygen stability.


1971 ◽  
Vol 49 (3) ◽  
pp. 385-392 ◽  
Author(s):  
J. C. Nduaguba ◽  
A. F. Clark

Intracellular distribution studies of steroid Δ4-reductase activity in female pig liver were done using testosterone as substrate. About 60% of the total enzyme activity was found in the 100 000 × g soluble fraction. Labelled 17β-hydroxy-5β-androstan-3-one but not 17β-hydroxy-5α-androstan-3-one was isolated from the incubation of 1,2-3H-testosterone with the 100 000 × g supernatant fraction, indicating the presence of 5β-reductase activity. 5β-Reduction may play an important role in the inactivation of some Δ4-3-ketosteroids in the pig liver.Evidence that 5β-reductases differing in substrate specificity are present in the soluble fraction includes (a) variation in the ratios of enzyme activities for several Δ4-3-ketosteroids in different (NH4)2SO4 fractions obtained from the 100 000 × g soluble fraction, (b) kinetic data showing that the maximum velocity for an equimolar mixture of testosterone and hydrocortisone is the sum of the maximum velocities for the substrates when used singly, and (c) separation of the enzyme activity specific for testosterone from that specific for hydrocortisone by use of Sephadex G-100 and hydroxylapatite chromatography.Utilizing (NH4)2SO4 precipitation and chromatography on Sephadex G-100 and hydroxylapatite, a 105-fold purification of testosterone Δ4-5β-reductase from the 100 000 × g supernatant fraction has been attained. The presence of 5 mM β-mercaptoethanolamine increased the stability of the enzyme.


Sign in / Sign up

Export Citation Format

Share Document