scholarly journals Chaos Synchronization between Fractional-Order Unified Chaotic System and Rossler Chaotic System

2012 ◽  
Vol 562-564 ◽  
pp. 2088-2091
Author(s):  
Xian Yong Wu ◽  
Yi Long Cheng ◽  
Kai Liu ◽  
Xin Liang Yu ◽  
Xian Qian Wu

The chaotic dynamics of the unified chaotic system and the Rossler system with different fractional-order are studied in this paper. The research shows that the chaotic attractors can be found in the two systems while the orders of the systems are less than three. Asymptotic synchronization of response and drive systems is realized by active control through designing proper controller when system parameters are known. Theoretical analysis and simulation results demonstrate the effective of this method.

2021 ◽  
Vol 2021 ◽  
pp. 1-8 ◽  
Author(s):  
Juan Liu ◽  
Xuefeng Cheng ◽  
Ping Zhou

In this study, a modified fractional-order Lorenz chaotic system is proposed, and the chaotic attractors are obtained. Meanwhile, we construct one electronic circuit to realize the modified fractional-order Lorenz chaotic system. Most importantly, using a linear resistor and a fractional-order capacitor in parallel coupling, we suggested one chaos synchronization scheme for this modified fractional-order Lorenz chaotic system. The electronic circuit of chaos synchronization for modified fractional-order Lorenz chaotic has been given. The simulation results verify that synchronization scheme is viable.


2005 ◽  
Vol 19 (20) ◽  
pp. 3249-3259 ◽  
Author(s):  
JUN GUO LU

In this paper, we numerically investigate the chaotic behaviors of the fractional-order Chua's circuit with a piecewise-linear nonlinearity. We find that chaos exists in the fractional-order Chua's circuit with order less than 3. The lowest order we find to have chaos is 2.7 in the homogeneous fractional-order Chua's circuit and 2.8 in the unhomogeneous fractional-order Chua's circuit. Our results are validated by the existence of a positive Lyapunov exponent. A chaos synchronization method is also presented for synchronizing the homogeneous fractional-order chaotic Chua's systems. The approach, based on stability theory of fractional-order linear systems, is simple and theoretically rigorous. It does not require the computation of the conditional Lyapunov exponents. Simulation results are used to visualize and illustrate the effectiveness of the proposed synchronization method.


2014 ◽  
Vol 602-605 ◽  
pp. 946-949
Author(s):  
Jing Fang ◽  
Ruo Xun Zhang

This paper investigates the synchronization of incommensurate fractional-order chaotic systems, and proposes a modified adaptive-feedback controller for fractional-order chaos synchronization based on Lyapunov stability theory, fractional order differential inequality and adaptive control theory. This synchronization approach that is simple, global and theoretically rigorous enables synchronization of fractional-order chaotic systems be achieved in a systematic way. Simulation results for a fractional-order chaotic system is provided to illustrate the effectiveness of the proposed scheme.


2011 ◽  
Vol 25 (03) ◽  
pp. 407-415 ◽  
Author(s):  
XIANG RONG CHEN ◽  
CHONG XIN LIU

Based on the stability theory of fractional order systems, an effective but theoretically rigorous nonlinear control method is proposed to synchronize the fractional order chaotic systems. Using this method, chaos synchronization between two identical fractional order unified systems is studied. Simulation results are shown to illustrate the effectiveness of this method.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Donato Cafagna ◽  
Giuseppe Grassi

A new fractional-order chaotic system with no equilibria is presented. The proposed system can be considered elegant in the sense given by Sprott (2010), since the corresponding system equations contain very few terms and the system parameters have a minimum of digits. The chaotic dynamics are analyzed using the predictor-corrector algorithm when the fractional-order of the derivative is 0.98. Finally, the presence of chaos is validated by applying different numerical methods.


2013 ◽  
Vol 321-324 ◽  
pp. 2464-2470
Author(s):  
Hao Wu ◽  
Bo Lun Xu ◽  
Chang Fan ◽  
Xian Yong Wu

In this paper, two synchronization schemes between two different chaotic systems are proposed. Chaos synchronization between unified chaotic system and Rossler system via active control and adaptive control are investigated. Different controllers are designed to synchronize the drive and response systems. Active control synchronization is used when system parameters are known; adaptive synchronization is employed when system parameters are unknown or uncertain. Simulation results show the effectiveness of the proposed schemes.


Inventions ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 49
Author(s):  
Zain-Aldeen S. A. Rahman ◽  
Basil H. Jasim ◽  
Yasir I. A. Al-Yasir ◽  
Raed A. Abd-Alhameed ◽  
Bilal Naji Alhasnawi

In this paper, a new fractional order chaotic system without equilibrium is proposed, analytically and numerically investigated, and numerically and experimentally tested. The analytical and numerical investigations were used to describe the system’s dynamical behaviors including the system equilibria, the chaotic attractors, the bifurcation diagrams, and the Lyapunov exponents. Based on the obtained dynamical behaviors, the system can excite hidden chaotic attractors since it has no equilibrium. Then, a synchronization mechanism based on the adaptive control theory was developed between two identical new systems (master and slave). The adaptive control laws are derived based on synchronization error dynamics of the state variables for the master and slave. Consequently, the update laws of the slave parameters are obtained, where the slave parameters are assumed to be uncertain and are estimated corresponding to the master parameters by the synchronization process. Furthermore, Arduino Due boards were used to implement the proposed system in order to demonstrate its practicality in real-world applications. The simulation experimental results were obtained by MATLAB and the Arduino Due boards, respectively, with a good consistency between the simulation results and the experimental results, indicating that the new fractional order chaotic system is capable of being employed in real-world applications.


2016 ◽  
Vol 2016 ◽  
pp. 1-13
Author(s):  
Wenyuan Duan ◽  
Heyuan Wang ◽  
Meng Kan

The dynamic behavior of a chaotic system in the internal wave dynamics and the problem of the tracing and synchronization are investigated, and the numerical simulation is carried out in this paper. The globally exponentially attractive set and positive invariant set of the chaotic system are studied via constructing the positive definite and radial unbounded Lyapunov function. There are no equilibrium positions, periodic solutions, quasi-period motions, wandering recovering motions, and other chaotic attractors of the system out of the globally exponentially attractive set. Strange attractors can only locate in the globally exponentially attractive set. A feedback controller is designed for the chaotic system to realize the control of the unstable point. The second method of Lyapunov is used to discuss theoretically the rationality of the design of the controller. The driving-response synchronization method is used to realize the globally exponential synchronization. The numerical simulation is carried out by MATLAB software, and the simulation results show that the method is effective.


Sign in / Sign up

Export Citation Format

Share Document