Deposition and Tribological Properties of CVD Diamond/Diamond-Like Carbon Composite Films

2012 ◽  
Vol 565 ◽  
pp. 615-620
Author(s):  
Bin Shen ◽  
Liang Wang ◽  
Su Lin Chen ◽  
Fang Hong Sun

The CVD diamond/diamond-like carbon composite film is fabricated on the WC-Co substrate by depositing a layer of Diamond-like Carbon film on the surface of conventional Micro- or Nano-crystalline diamond film. The hot filament chemical vapor deposition (HFCVD) method and vacuum arc discharge with a graphite cathode are adopted respectively to deposit the MCD/NCD and DLC films. A variety of characterization techniques, including filed emission scanning electron microscope (FE-SEM) and Raman spectroscopy are employed to investigate the surface morphology and atomic bonding state of as-deposited MCD/DLC and NCD/DLC composite film. The results show that both MCD/DLC and NCD/DLC composite films present similar surface morphology with the MCD and NCD films, except for scattering a considerable amount of small-sized diamond crystallites among the grain boundary area. The atomic-bonding state of as-deposited MCD/DLC and NCD/DLC composite films is determined by the top-layered DLC film, which is mainly consisted of amorphous carbon phase and no discernible sp3 characteristic peak can be observed from their Raman spectrum. Furthermore, the tribological properties of as-deposited MCD/DLC and NCD/DLC composite films is examined using a ball-on-plate reciprocating friction tester under both dry sliding and water-lubricating conditions, comparing with conventional DLC, MCD and NCD films. Silicon nitride balls are used as counterpart materials. For the CVD diamond/DLC composite films, the self-lubricating effect of top-layered DLC film is beneficial for suppressing the initial friction peak, as well as shortening the run-in period. The average friction coefficients of MCD/DLC and NCD/DLC composite films during stable sliding period are 0.07 and 0.10 respectively in dry sliding; while under water-lubricating condition, they further decreases to 0.03 and 0.07.

Electrochem ◽  
2020 ◽  
Vol 1 (4) ◽  
pp. 388-393
Author(s):  
Yu-An Chien ◽  
Tso-Fu Mark Chang ◽  
Chun-Yi Chen ◽  
Daisuke Yamane ◽  
Hiroyuki Ito ◽  
...  

Strengthening of electrodeposited Au-based materials is achieved by co-electrodeposition with TiO2 nanoparticles dispersed in a sulfide-based gold electrolyte. TiO2 content in the composite film is adjusted by concentration of the TiO2 in the gold electrolyte. Effects of the TiO2 content on surface morphology, crystalline structure and microstructure of the composite film are investigated. Mechanical properties of the Au–TiO2 composite films are evaluated by micro-Vickers hardness and micro-compression tests. The hardness increases from 135 to 207 HV when the TiO2 content is increased from 0 to 2.72 wt%. Specimens used in the micro-compression test are micro-pillars fabricated from the composite film, and the yield strength reaches 0.84 GPa by incorporating 2.72 wt% TiO2 into the film.


2007 ◽  
Vol 16 (11) ◽  
pp. 1940-1944 ◽  
Author(s):  
Hiroshi Kinoshita ◽  
Ippei Ippei ◽  
Hirokazu Sakai ◽  
Nobuo Ohmae

2005 ◽  
Vol 200 (7) ◽  
pp. 2146-2151 ◽  
Author(s):  
W. Gulbiński ◽  
S. Kukiełka ◽  
Y. Pauleau ◽  
F. Thièry

2020 ◽  
Vol 84 (9) ◽  
pp. 1065-1067
Author(s):  
L. N. Kotov ◽  
M. P. Lasek ◽  
V. K. Turkov ◽  
D. M. Kholopov ◽  
V. S. Vlasov ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1908
Author(s):  
Hai Li ◽  
Sooman Lim

Self-polarized piezoelectric devices have attracted significant interest owing to their fabrication processes with low energy consumption. Herein, novel poling-free piezoelectric nanogenerators (PENGs) based on self-polarized polyvinylidene difluoride (PVDF) induced by the incorporation of different surface-modified barium titanate nanoparticles (BTO NPs) were prepared via a fully printing process. To reveal the effect of intermolecular interactions between PVDF and NP surface groups, BTO NPs were modified with hydrophilic polydopamine (PDA) and hydrophobic 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTES) to yield PDA-BTO and PFD-BTO, respectively. This study demonstrates that the stronger hydrogen bonding interactions existed in PFD-BTO/PVDF composite film comparative to the PDA-BTO/PVDF composite film induced the higher β-phase formation (90%), which was evidenced by the XRD, FTIR and DSC results, as well as led to a better dispersion of NPs and improved mechanical properties of composite films. Consequently, PFD-BTO/PVDF-based PENGs without electric poling exhibited a significantly improved output voltage of 5.9 V and power density of 102 μW cm−3, which was 1.8 and 2.9 times higher than that of PDA-BTO/PVDF-based PENGs, respectively. This study provides a promising approach for advancing the search for high-performance, self-polarized PENGs in next-generation electric and electronic industries.


Author(s):  
Haijie Chen ◽  
Zhiwen Zheng ◽  
Hongxiang Yu ◽  
Dan Qiao ◽  
Dapeng Feng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document