Production of Carbon Dioxide Snow by Flash-Atomization for Material Cleaning Process

2012 ◽  
Vol 569 ◽  
pp. 282-285 ◽  
Author(s):  
Yi Jun Shen ◽  
Tien Chu Lin ◽  
Muh Ron Wang

This paper investigates the production of CO2 snow by flash-atomization of liquid carbon dioxide for material cleaning process. The evolution of flash-atomization processes was recorded by means of high-speed shadowgraph. Results shows that the degree of superheat condition of liquid CO2 greatly influence the atomization modes, bobbles growth rate and concentration, and thus result in difference spray angle, spray pattern, and the structure of liquid jet which is suitable for different material cleaning applications. It is found that the spray angle first slowly increases with increase in the degree of superheat (ΔT) under external flash atomization processes. It is increased drastically as the spray transform from external-flashing to internal-flashing mode. Finally the spray angle is decreased again because of the decrease of mass flowrate due to the internal flashing processes . Moreover, the spray angle is increased as the length-to-diameter ratio (L/D) is increased. This is due to the higher bobble growth rate in terms of different pressure distribution and bobble growth time. It is also found that the external-flashing disappears at higher L/D because of the heat transfer to the liquid carbon dioxide. It is concluded that the superheated condition is useful in the control of the spray angle for material cleaning processes.

TAPPI Journal ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. 345-354
Author(s):  
EDUARDO KEIM ◽  
JORGE ZUNIGA ◽  
HONGHI TRAN

The lime kiln at the Arauco Constitución mill experienced severe ringing problems requiring it to be shut down for ring removal every 3 to 6 months. The mill controlled the problems by blasting ring deposits off during operation with its existing industrial shotgun and a newly installed Cardox liquid carbon dioxide (CO2) cartridge system. Various ring blasting procedures were tested to determine the optimum ring location and thickness to blast; the optimum depth to insert the CO2 cartridge into the kiln; and the most effective blasting frequency and sequence to employ. The best strategy was found to be the weekly blasting operation that alternated between the liquid CO2 cartridge and the industrial shotgun, with the CO2 cartridge inserted into the ring mass, 20 cm (8 in.) away from the refractory brick surface, and the shotgun aimed at rings at about 28 m (92 ft) from the kiln discharge end. With each blasting event removing considerably more rings than before, it takes a longer time for rings to rebuild, allowing the kiln to run continuously between annual maintenance shutdowns with only a few short (< 4 h) downtimes for ring removal. This substantially reduces the costs associated with ring removal and lime replacement during unscheduled shutdowns.


2021 ◽  
Vol 287 ◽  
pp. 106106
Author(s):  
Xianfeng Liu ◽  
Baisheng Nie ◽  
Kunyong Guo ◽  
Chengpeng Zhang ◽  
Zepeng Wang ◽  
...  

Physica ◽  
1973 ◽  
Vol 63 (1) ◽  
pp. 154-162 ◽  
Author(s):  
W. Pecceu ◽  
W. Van Dael

2006 ◽  
Vol 7 (8) ◽  
pp. n/a-n/a ◽  
Author(s):  
John Lupton ◽  
David Butterfield ◽  
Marvin Lilley ◽  
Leigh Evans ◽  
Ko-ichi Nakamura ◽  
...  

2006 ◽  
Vol 45 (10) ◽  
pp. 3434-3437 ◽  
Author(s):  
Ha Soo Hwang ◽  
Min Young Lee ◽  
Yeon Tae Jeong ◽  
Seong-Soo Hong ◽  
Yeong-Soon Gal ◽  
...  

2014 ◽  
Vol 3 (4) ◽  
pp. 119 ◽  
Author(s):  
Raffaele Romano ◽  
Nadia Manzo ◽  
Immacolata Montefusco ◽  
Annalisa Romano ◽  
Antonello Santini

<p>In this study the use of liquid carbon dioxide, CO<sub>2</sub>, for extraction of oil from olive paste (<em>Peranzana cultivar</em>)<strong> </strong>were examined and extracted oil was compared with oils obtained by centrifugation, pressure and use of chemical solvent.</p> <p>It is well known that the use of CO<sub>2</sub> has many advantages: miscibility with a wide range of molecules, food safety, non-flammability, absence of residues in the extract, possibility of total solvent recovery and no production of olive mill waste water that are highly polluting for the environment and require expansive disposal.</p> <p>Samples were subjected to the following analyses: determination of Free Fatty Acids (FFA), Peroxides Value (PV), Spectrophotometric Indices, Fatty Acids Composition (FA), determination of biophenols content and determination of Volatile Organic Compounds (VOCs). All samples showed FFA, PV and ?K values within the limits established by law for extra-virgin olive oil. The use of CO<sub>2</sub> did not catalyze hydrolysis, oxidation and condensation of double bonds. Centrifuged oils and oils extracted with carbon dioxide presented the lowest PV and FFA values. Extraction with liquid carbon dioxide contributed to an increasing of phenolic content with a value of 270.5 mg/kg, a value twice that of the oils extracted with centrifugation (135.3 mg/kg) or pressure methods (173.2 mg/kg). Oil extracted with liquid carbon dioxide showed the greatest amount of t-2-octenal and t-2-heptenal, giving herbaceous and pungent notes. Moreover the presence of aromatic compounds such as limonene, generally absent in olive oils, was only detected in the sample extracted with liquid carbon dioxide.</p>


2015 ◽  
Vol 39 ◽  
pp. 463-469 ◽  
Author(s):  
ChiiJyh Teh ◽  
Ahmed Barifcani ◽  
David Pack ◽  
Moses O. Tade

Sign in / Sign up

Export Citation Format

Share Document