ring location
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 1)

TAPPI Journal ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. 345-354
Author(s):  
EDUARDO KEIM ◽  
JORGE ZUNIGA ◽  
HONGHI TRAN

The lime kiln at the Arauco Constitución mill experienced severe ringing problems requiring it to be shut down for ring removal every 3 to 6 months. The mill controlled the problems by blasting ring deposits off during operation with its existing industrial shotgun and a newly installed Cardox liquid carbon dioxide (CO2) cartridge system. Various ring blasting procedures were tested to determine the optimum ring location and thickness to blast; the optimum depth to insert the CO2 cartridge into the kiln; and the most effective blasting frequency and sequence to employ. The best strategy was found to be the weekly blasting operation that alternated between the liquid CO2 cartridge and the industrial shotgun, with the CO2 cartridge inserted into the ring mass, 20 cm (8 in.) away from the refractory brick surface, and the shotgun aimed at rings at about 28 m (92 ft) from the kiln discharge end. With each blasting event removing considerably more rings than before, it takes a longer time for rings to rebuild, allowing the kiln to run continuously between annual maintenance shutdowns with only a few short (< 4 h) downtimes for ring removal. This substantially reduces the costs associated with ring removal and lime replacement during unscheduled shutdowns.


Author(s):  
Obai Younis ◽  
Reem Ahmed ◽  
Ali Mohammed Hamdan ◽  
Dania Ahmed

This study aims to optimize the velocity of ring shape parameter for designing the nozzles using computational fluid dynamics (CFD) and investigated the flow in nozzles using ANSYS, Inc. simulation software. The model geometries were defined using ANSYS FLUENT-Design Modeler platform. All nozzles were designed on unstructured triangular elements comprising of 1200000 mesh nodes. The differential governing equations were applied in ANSYS FLUENT based on a finite volume method. The distance and dimensions of ring location significantly influence the velocity of water during flow where the maximum velocity at double rings reduces the surface area at distance of 7mm and 15mm and 2x2 mm dimensions. Considering 8, 10, and 12 bar liner proportions, there was an increase in the velocity at maximum points in ring shapes.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 392
Author(s):  
Xinman Zhang ◽  
Weiyong Gong ◽  
Xuebin Xu

Magnetic rings are the most widely used magnetic material product in industry. The existing manual defect detection method for magnetic rings has high cost, low efficiency and low precision. To address this issue, a magnetic ring multi-defect stereo detection system based on multi-camera vision technology is developed to complete the automatic inspection of magnetic rings. The system can detect surface defects and measure ring height simultaneously. Two image processing algorithms are proposed, namely, the image edge removal algorithm (IERA) and magnetic ring location algorithm (MRLA), separately. On the basis of these two algorithms, connected domain filtering methods for crack, fiber and large-area defects are established to complete defect inspection. This system achieves a recognition rate of 100% for defects such as crack, adhesion, hanger adhesion and pitting. Furthermore, the recognition rate for fiber and foreign matter defects attains 92.5% and 91.5%, respectively. The detection speed exceeds 120 magnetic rings per minutes, and the precision is within 0.05 mm. Both precision and speed meet the requirements of real-time quality inspection in actual production.


2019 ◽  
Vol 487 (4) ◽  
pp. 5874-5888 ◽  
Author(s):  
Nicole Pawellek ◽  
Attila Moór ◽  
Ilaria Pascucci ◽  
Alexander V Krivov

ABSTRACT Debris discs are dusty belts of planetesimals around main-sequence stars, similar to the asteroid and Kuiper belts in our Solar system. The planetesimals cannot be observed directly, yet they produce detectable dust in mutual collisions. Observing the dust, we can try to infer properties of invisible planetesimals. Here, we address the question of what is the best way to measure the location of outer planetesimal belts that encompass extrasolar planetary systems. A standard method is using resolved images at millimetre wavelengths, which reveal dust grains with sizes comparable to the observational wavelength. Smaller grains seen in the infrared (IR) are subject to several non-gravitational forces that drag them away from their birth rings, and so may not closely trace the parent bodies. In this study, we examine whether imaging of debris discs at shorter wavelengths might enable determining the spatial location of the exo-Kuiper belts with sufficient accuracy. We find that around M-type stars the dust best visible in the mid-IR is efficiently displaced inwards from their birth location by stellar winds, causing the discs to look more compact in mid-IR images than they actually are. However, around earlier-type stars where the majority of debris discs is found, discs are still the brightest at the birth ring location in the mid-IR regime. Thus, sensitive IR facilities with good angular resolution, such as MIRI on James Webb Space Telescope, will enable tracing exo-Kuiper belts in nearby debris disc systems.


2018 ◽  
Vol 20 (8-9) ◽  
pp. 911-930 ◽  
Author(s):  
Rui Li ◽  
Xianghui Meng ◽  
Youbai Xie

The stuffing box-piston rod system is widely used in the low-speed marine diesel engines to scrape oil and ensure sealing. Its friction power loss and wear rate are great, but the studies about the system are very limited. In this study, based on the special structure and working conditions of the stuffing box, the analytical model for the tribological properties of the stuffing box-piston rod system is developed considering the oil starvation and relative ring location effects. The minimum oil film thickness, friction, oil transportation, and asperity contact are calculated for the stuffing box. The analysis results show that compared with the fully flooded lubrication, the minimum oil film thicknesses of the rings reduce significantly in the middle of the strokes under the starved lubrication condition, but the friction losses of the rings are influenced by the comprehensive effects of the oil film thickness reduction and lubricating area reduction under the starved lubrication condition, which is related to the specific profiles of the rings. In addition, compared with the engine piston ring pack, the relative ring location effect is more obvious in the stuffing box ring pack because there are more rings and the ring intervals are larger. The relative ring location effect makes the minimum oil film thicknesses, friction forces, and asperity contacts of the rings have oscillations after bottom dead center and top dead center.


2017 ◽  
Vol 37 (5) ◽  
pp. 1039-1044 ◽  
Author(s):  
George Stearns ◽  
Robert Conrad ◽  
David Winfrey ◽  
Nancy Shippentower-Games ◽  
Deanna Finley

Author(s):  
Nathan Schulz ◽  
Chiara Silvestri Dobrovolny ◽  
Abhinav Mohanakrishnan

Computer finite element simulations play an important role in reducing the cost and time taken for prediction of a crash scenario. While interior crash protection has received adequate attention for automobiles, very little is known for commercial vehicle such as heavy trucks. The understanding of injury types for heavy trucks occupants in relation to different crash scenarios would help mitigation of the injury severity. Finite element computer models of the heavy truck cabin structure, interior cabin components, anthropomorphic test device (ATD) (also called dummy) and passive restraint systems were developed and assembled to simulate head-on crash of a heavy truck into a rigid barrier. The researchers developed a computer simulation parametric evaluation with respect to specific seat belt restraint system parameters for a speed impact of 56.3 km/h (35 mph). Restraint parameter variations within this research study are seat belt load limiting characteristics, inclusion of seat belt pretensioner, and variation of seat belt D-ring location. Additionally an airbag was included to investigate another restraint system. For each simulated impact characteristic and restraint system variation, the occupant kinematics were observed and occupant risks were assessed. Within the approximations and assumptions included in this study, the results presented in this paper should be considered as preliminary guidance on the effectiveness of the use of seat belt as occupant injury mitigation system.


2016 ◽  
Vol 50 (2) ◽  
pp. 541-558 ◽  
Author(s):  
Paolo Gianessi ◽  
Laurent Alfandari ◽  
Lucas Létocart ◽  
Roberto Wolfler Calvo

Sign in / Sign up

Export Citation Format

Share Document