Dynamically Manipulating Beam with Metallic Nano-Optic Lens Containing Liquid Crystal

2012 ◽  
Vol 571 ◽  
pp. 287-291 ◽  
Author(s):  
Ji Cheng Wang ◽  
Xia Zhou ◽  
Jie Gao ◽  
Zhe Tao Xu ◽  
Lin Sun ◽  
...  

A set of metallic nano-optic lens with liquid crystal material embedded in the slits is proposed as a new idea of dynamically manipulating beam. Three kinds of metallic nano-optic lens can achieve the functions of beam deflecting, beam splitting and beam focusing respectively. The deflection angle, splitting angle and focus length can be controlled by external electrical field easily. The three phenomena are based on the principal that changing the external electrical field can control the phase of the waveguide mode in the slits.

2021 ◽  
pp. 014459872110102
Author(s):  
Lu Weiyong ◽  
He Changchun

To better evaluate the spatial steering effect of directional perforation hydraulic fractures, evaluation indexes for the spatial steering effect are first proposed in this paper. Then, these indexes are used to quantitatively evaluate existing physical experimental results. Finally, with the help of RFPA2D-Flow software, the influence of perforation length and azimuth on the spatial steering process of hydraulic fracture are quantitatively analysed using four evaluation indexes. It is shown by the results that the spatial deflection trajectory, deflection distance, deflection angle and initiation pressure of hydraulic fractures can be used as quantitative evaluation indexes for the spatial steering effect of hydraulic fractures. The deflection paths of directional perforation hydraulic fractures are basically the same. They all gradually deflect to the maximum horizontal principal stress direction from the perforation hole and finally represent a double-wing bending fracture. The deflection distance, deflection angle and initiation pressure of hydraulic fractures increase gradually with increasing perforation azimuth, and the sensitivity of the deflection angle to the perforation azimuth of hydraulic fractures also increases. With increasing perforation length, the deflection distance of hydraulic fractures increases gradually. However, the deflection angle and initiation pressure decrease gradually, as does the sensitivity.


2008 ◽  
Vol 103 (9) ◽  
pp. 093107 ◽  
Author(s):  
Lalgudi V. Natarajan ◽  
Jeremy M. Wofford ◽  
Vincent P. Tondiglia ◽  
Richard L. Sutherland ◽  
Hilmar Koerner ◽  
...  

2008 ◽  
Vol 22 (14) ◽  
pp. 2263-2273 ◽  
Author(s):  
RAJBIR SINGH ◽  
K. K. RAINA

Dielectric relaxation spectroscopy in the frequency range 50 Hz to 1 MHz has been carried out in a room temperature ferroelectric liquid crystal mixture in the SmC*, SmA and N* phases in cells of different thickness. The relaxation frequency fr, distribution parameter α and dielectric strength δ∊ have been evaluated. Goldstone mode, domain mode and soft mode have been observed. It is found that the cell thickness has a significant effect on the dielectric parameters of the ferroelectric liquid crystal material. The results have been discussed.


1999 ◽  
Vol 14 (30) ◽  
pp. 4819-4840
Author(s):  
JAN FISCHER ◽  
IVO VRKOČ

We discuss the current use of the operator-product expansion in QCD calculations. Treating the OPE as an expansion in inverse powers of an energy-squared variable (with possible exponential terms added), approximating the vacuum expectation value of the operator product by several terms and assuming a bound on the remainder along the Euclidean region, we observe how the bound varies with increasing deflection from the Euclidean ray down to the cut (Minkowski region). We argue that the assumption that the remainder is constant for all angles in the cut complex plane down to the Minkowski region is not justified. Making specific assumptions on the properties of the expanded function, we obtain bounds on the remainder in explicit form and show that they are very sensitive both to the deflection angle and to the class of functions considered. The results obtained are discussed in connection with calculations of the coupling constant αs from the τ decay.


2021 ◽  
Vol 34 (2) ◽  
pp. 183-192
Author(s):  
Mei Xiaochun

In general relativity, the values of constant terms in the equations of motions of planets and light have not been seriously discussed. Based on the Schwarzschild metric and the geodesic equations of the Riemann geometry, it is proved in this paper that the constant term in the time-dependent equation of motion of planet in general relativity must be equal to zero. Otherwise, when the correction term of general relativity is ignored, the resulting Newtonian gravity formula would change its basic form. Due to the absence of this constant term, the equation of motion cannot describe the elliptical and the hyperbolic orbital motions of celestial bodies in the solar gravitational field. It can only describe the parabolic orbital motion (with minor corrections). Therefore, it becomes meaningless to use general relativity calculating the precession of Mercury's perihelion. It is also proved that the time-dependent orbital equation of light in general relativity is contradictory to the time-independent equation of light. Using the time-independent orbital equation to do calculation, the deflection angle of light in the solar gravitational field is <mml:math display="inline"> <mml:mrow> <mml:mn>1.7</mml:mn> <mml:msup> <mml:mn>5</mml:mn> <mml:mo>″</mml:mo> </mml:msup> </mml:mrow> </mml:math> . But using the time-dependent equation to do calculation, the deflection angle of light is only a small correction of the prediction value <mml:math display="inline"> <mml:mrow> <mml:mn>0.87</mml:mn> <mml:msup> <mml:mn>5</mml:mn> <mml:mo>″</mml:mo> </mml:msup> </mml:mrow> </mml:math> of the Newtonian gravity theory with a magnitude order of <mml:math display="inline"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> . The reason causing this inconsistency was the Einstein's assumption that the motion of light satisfied the condition <mml:math display="inline"> <mml:mrow> <mml:mi>d</mml:mi> <mml:mi>s</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> in gravitational field. It leads to the absence of constant term in the time-independent equation of motion of light and destroys the uniqueness of geodesic in curved space-time. Meanwhile, light is subjected to repulsive forces in the gravitational field, rather than attractive forces. The direction of deflection of light is opposite, inconsistent with the predictions of present general relativity and the Newtonian theory of gravity. Observing on the earth surface, the wavelength of light emitted by the sun is violet shifted. This prediction is obviously not true. Practical observation is red shift. Finally, the practical significance of the calculation of the Mercury perihelion's precession and the existing problems of the light's deflection experiments of general relativity are briefly discussed. The conclusion of this paper is that general relativity cannot have consistence with the Newtonian theory of gravity for the descriptions of motions of planets and light in the solar system. The theory itself is not self-consistent too.


Sign in / Sign up

Export Citation Format

Share Document