Residual Stresses and Deformations in Electron Beam Melting process Using Finite Element Analysis

2012 ◽  
Vol 576 ◽  
pp. 789-792 ◽  
Author(s):  
Afshin Mohammad Hosseini ◽  
Syed H. Masood ◽  
Darren Fraser ◽  
Mahnaz Jahedi

The simulation of residual stress in Electron Beam Melting (EBM) process is critical for optimization of process conditions. However, there is no published literature on the simulation of residual stresses in this process. This paper considers finite element modeling of the temperature distribution through transient thermal analysis. The measured temperature and total heat flux from transient thermal analysis are then used as initial input parameters to the structural analysis. Consequently, deformations and residual stresses in structural analysis were measured. The titanium alloy, Ti6Al4V has been used, which is one of the most common materials for biomedical implants due to its high strength to weight ratio, corrosion resistance, and its biocompatibility features.

Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1151 ◽  
Author(s):  
Fawaz M. Abdullah ◽  
Saqib Anwar ◽  
Abdulrahman Al-Ahmari

Electron beam melting (EBM) is a relatively new process in three-dimensional (3D) printing to enable rapid manufacturing. EBM can manufacture metallic parts with thin walls, multi-layers, and complex internal structures that could not otherwise be produced for applications in aerospace, medicine, and other fields. A 3D transient coupled thermomechanical finite element (FE) model was built to simulate the temperature distribution, distortion, and residual stresses in electron beam additive manufactured Ti-6Al-4V parts. This research enhances the understanding of the EBM-based 3D printing process to achieve parts with lower levels of residual stress and distortion and hence improved quality. The model used a fine mesh in the layer deposition zone, and the mesh size was gradually increased with distance away from the deposits. Then, elements are activated layer by layer during deposition according to the desired material properties. On the top surface, a Gaussian distributed heat flux is used to model the heat source, and the temperature-dependent properties of the powder and solid are also included to improve accuracy. The current simulation has been validated by comparing the FE distortion and temperature results with the experimental results and other reported simulation studies. The residual stress results calculated by the FE analysis were also compared with the previously reported simulation studies on the EBM process. The results showed that the finite element approach can efficiently and accurately predict the temperature field of a part during the EBM process and can easily be extended to other powder bed fusion processes.


2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881230 ◽  
Author(s):  
Chuanming Du ◽  
Geng Liu ◽  
Guan Qiao ◽  
Shangjun Ma ◽  
Wei Cai

The thermal behavior of the standard planetary roller screw mechanism needs to be investigated since the large amount of heat generated by the friction torque on multiple contact points during the transmission process. In this article, a simplified transmission system model of standard planetary roller screw mechanism is first established for the finite element analysis. Second, the friction torque of standard planetary roller screw mechanism is calculated and the boundary conditions of thermal analysis are deduced. Then, the transient thermal analysis of the standard planetary roller screw mechanism based on finite element method is conducted by considering the moving heat source and thus temperature field distribution at any time and the temperature rise curve at different positions of the standard planetary roller screw mechanism can be obtained. Finally, the correlation between the experimental data and the calculated values confirms the validity of the proposed thermal model for the transient thermal analysis.


2016 ◽  
Vol 856 ◽  
pp. 245-250 ◽  
Author(s):  
Themistoklis D. Kefalas ◽  
Antonios G. Kladas

Three dimensional (3–D), finite–element (FE) models and original lumped–parameter networks are developed for the transient thermal analysis of a permanent magnet motor (PMM) and an induction motor (IM) specifically designed and optimized for a demanding aerospace actuation application. A systematic comparison between the two different thermal modeling approaches is carried out using different loading conditions.


2014 ◽  
Vol 43 (12) ◽  
pp. 1953-1970
Author(s):  
Hai-Bao Chen ◽  
Sheldon X.-D. Tan ◽  
David H. Shin ◽  
Xin Huang ◽  
Hai Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document