3-D FEM and Lumped-Parameter Network Transient Thermal Analysis of Induction and Permanent Magnet Motors for Aerospace Applications

2016 ◽  
Vol 856 ◽  
pp. 245-250 ◽  
Author(s):  
Themistoklis D. Kefalas ◽  
Antonios G. Kladas

Three dimensional (3–D), finite–element (FE) models and original lumped–parameter networks are developed for the transient thermal analysis of a permanent magnet motor (PMM) and an induction motor (IM) specifically designed and optimized for a demanding aerospace actuation application. A systematic comparison between the two different thermal modeling approaches is carried out using different loading conditions.

Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3239
Author(s):  
Phuong Thi Luu ◽  
Ji-Young Lee ◽  
Ji-Heon Lee ◽  
Jung-Woo Park

This paper presents the electromagnetic and thermal characteristics of a permanent magnet synchronous motor (PMSM) in a joint actuator which is used for articulated robot application. In an attempt to design a compact PMSM for the articulated robot, robot link should be taken into consideration during the motor design process as it can reduce the temperature distribution on motor, thus reducing the volume of the motor. A lumped-parameter thermal model of PMSM with and without a link is proposed considering the core loss, copper loss, and mechanical loss as heat sources. The electromagnetic and thermal analysis results are well confirmed by the experiment in a 400 W 20-pole/24-slot PMSM. The experiment results show that the robot link helps to reduce the motor end-winding temperature by about 40%, and this leads to an increase in power density of the motor.


2012 ◽  
Vol 576 ◽  
pp. 789-792 ◽  
Author(s):  
Afshin Mohammad Hosseini ◽  
Syed H. Masood ◽  
Darren Fraser ◽  
Mahnaz Jahedi

The simulation of residual stress in Electron Beam Melting (EBM) process is critical for optimization of process conditions. However, there is no published literature on the simulation of residual stresses in this process. This paper considers finite element modeling of the temperature distribution through transient thermal analysis. The measured temperature and total heat flux from transient thermal analysis are then used as initial input parameters to the structural analysis. Consequently, deformations and residual stresses in structural analysis were measured. The titanium alloy, Ti6Al4V has been used, which is one of the most common materials for biomedical implants due to its high strength to weight ratio, corrosion resistance, and its biocompatibility features.


Sign in / Sign up

Export Citation Format

Share Document