Preparation, Characterization and Visible-Light Photocatalytic Properties of BiOCl/BiOI Nanocomposites

2012 ◽  
Vol 586 ◽  
pp. 10-17 ◽  
Author(s):  
Kai Jin Huang ◽  
Hou Guang Liu ◽  
Fang Li Yuan ◽  
Chang Sheng Xie

BiOCl/BiOI nanocomposites were synthesized using a thermal impregnation method for the first time. The intense visible-light absorption and large specific surface area gave 4wt.%BiOCl/BiOI nanocomposites the best visible-light photocatalytic properties among all the catalysts for the photodegradation of methyl orange,about 78% after 2 h. But decreased activities were obtained with the increase of BiOCl content in the nanocomposites. Considering the light absorption,specific surface area and the quantum efficiency, the high recombination of the photoinduced electron-hole pairs of the catalysts that lowed the quantum efficiency was believed to be the critical factor for their decreased photocatalytic activities.

2011 ◽  
Vol 356-360 ◽  
pp. 1253-1257
Author(s):  
Xiao Ming Gao ◽  
Yu Fei Wu ◽  
Jing Wang ◽  
Feng Fu ◽  
Li Ping Zhang ◽  
...  

An enhanced visible-light-driven catalyst BiVO4 doping with Cu was synthesized by hydrothermal method and characterized by XRD, UV-vis DRS, specific surface area. The characterization results indicated a better crystal structure of Cu-BiVO4. The photocatalytic properties were evaluated by degrading wastewater with phenol, taking pH of catalysts prepared, dosage of catalyst and air flow as the research factors. The results showed that Cu-BiVO4 has an effective photodegradation of phenol under the suitable conditions.


RSC Advances ◽  
2017 ◽  
Vol 7 (57) ◽  
pp. 36101-36111 ◽  
Author(s):  
Haiyan Ji ◽  
Yamin Fan ◽  
Jia Yan ◽  
Yuanguo Xu ◽  
Xiaojie She ◽  
...  

2D/2D SnO2/GL-C3N4 photocatalysts with large specific surface area and high coupling heterointerface extent were synthesized by an environmental friendly hydrothermal method, showing excellent photocatalytic performance on RhB degradation.


2011 ◽  
Vol 412 ◽  
pp. 365-369
Author(s):  
Yuan Feng Huang ◽  
Wei Jun Zhang ◽  
Li Shen ◽  
Jin Hu ◽  
Zhuo Heng Li ◽  
...  

A series of Ba-Al-O NSR supports and Pt/Ba-Al-O NSR catalysts are prepared by co-precipitation and impregnation method in this work. The catalyst and the support are characterized by XRD, SEM, SBET performance testing. The structure and texture of the supports is observed and discussed. The results of SBET indicate that the supports possess relative high specific surface area (94~110 m2/g). Temperature programmed reduction is characterized by means of H2-TPR.


NANO ◽  
2020 ◽  
Vol 15 (06) ◽  
pp. 2050079
Author(s):  
Xuelei Li ◽  
Jinfeng Bai ◽  
Jiaqi Li ◽  
Chao Li ◽  
Junru Zhang ◽  
...  

In this study, nitrogen-deficient graphitic carbon nitride (M-LS-g-C3N4) with a mesoporous structure and a large specific surface area was obtained by calcination after melt pretreatment using urea as a precursor. X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption, X-ray photoelectron spectroscopy (XPS), UV-Vis, ESR and photoluminescence (PL) were used to characterize the structure, morphology and optical performance of the samples. The TEM results showed the formation of a mesoporous structure on the 0.1[Formula: see text]M-LS-g-C3N4 surface. The porous structure led to an increase in the specific surface area from 41.5[Formula: see text]m2/g to 124.3[Formula: see text]m2/g. The UV-Vis results showed that nitrogen vacancies generated during the modification process reduced the band gap of g-C3N4 and improved the visible light absorption. The PL spectra showed that the nitrogen defects promoted the separation of photogenerated electron–hole pairs. In the visible light degradation of methyl orange (MO), the reaction rate constant of 0.1[Formula: see text]M-LS-g-C3N4 reached 0.0086[Formula: see text][Formula: see text], which was 5.05 times that of pure g-C3N4. Superoxide radicals and photogenerated holes were found to be the main active species in the reaction system. This study provides an efficient, green and convenient means of preparing graphitic carbon nitride with a large specific surface area.


Sign in / Sign up

Export Citation Format

Share Document