scholarly journals Construction of SnO2/graphene-like g-C3N4 with enhanced visible light photocatalytic activity

RSC Advances ◽  
2017 ◽  
Vol 7 (57) ◽  
pp. 36101-36111 ◽  
Author(s):  
Haiyan Ji ◽  
Yamin Fan ◽  
Jia Yan ◽  
Yuanguo Xu ◽  
Xiaojie She ◽  
...  

2D/2D SnO2/GL-C3N4 photocatalysts with large specific surface area and high coupling heterointerface extent were synthesized by an environmental friendly hydrothermal method, showing excellent photocatalytic performance on RhB degradation.

RSC Advances ◽  
2016 ◽  
Vol 6 (23) ◽  
pp. 18958-18964 ◽  
Author(s):  
Qianqian Ding ◽  
Yunxia Zhang ◽  
Guozhong Wang ◽  
Hongjian Zhou ◽  
Haimin Zhang

The hollow mesoporous TiO2–Au–TiO2 nanospheres with stability, large specific surface area can enhance visible-light-induced photocatalytic activity.


2020 ◽  
Vol 13 (07) ◽  
pp. 2051037
Author(s):  
Ke Han ◽  
Guobao Li ◽  
Fang Li ◽  
Mingming Yao

For the sake of improving the photocatalytic performance of TiO2, we prepared the B/Ag/Fe tridoped TiO2 films on common glass and stone substrates by the sol–gel method. In this work, the optical absorption, recombination of photogenerated electrons (e−) and holes (h[Formula: see text]), crystal types, thermal stability, composition, specific surface area and photocatalytic activity of the modified TiO2 films were investigated. The results indicated that B/Ag/Fe tridoping not only enhanced the absorption of visible light by TiO2, but inhibited the recombination of electron–hole (e−/h[Formula: see text]) pairs. The tridoping also promoted the formation of anatase and prevented the transformation of anatase to rutile at high temperature. The composite TiO2 has a large specific surface area, about three times that of pure TiO2. The photocatalytic activity of the TiO2 films were evaluated by methyl green (MG) and formaldehyde degradation. In all samples, the B/Ag/Fe tridoped TiO2 film exhibited the highest degradation rate of MG under both ultraviolet and visible light irradiation. The improvement of photocatalytic performance of TiO2 films is due to the synergistic effect of the B/Ag/Fe tridoping, which enhances the absorption of visible light and prolongs the lifetime of e−/h[Formula: see text] pairs and facilitates transfer of interface charge.


2011 ◽  
Vol 110-116 ◽  
pp. 1912-1917 ◽  
Author(s):  
Pei Song Tang ◽  
Hai Feng Chen ◽  
Feng Cao ◽  
Guo Xiang Pan ◽  
Min Hong Xu ◽  
...  

The single perovskite BiFeO3 nanoparticles were prepared by a sol-gel process. The BiFeO3 nanoparticles were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy, and Brunauer-Emmett-Teller (BET) method. It was found that the prepared BiFeO3 nanoparticles show the large specific surface area of 136 m2/g, and narrow band gap of 2.12 eV. Consequently, BiFeO3 nanoparticles show high visible-light photocatalytic activity for decomposition of methylene blue in comparison with the commercial Degussa P25. It is concluded that the large specific surface area and the narrow band gap contribute to the high visible-light photocatalytic activity through enhanced adsorption capability and visible-light absorption.


NANO ◽  
2020 ◽  
Vol 15 (06) ◽  
pp. 2050079
Author(s):  
Xuelei Li ◽  
Jinfeng Bai ◽  
Jiaqi Li ◽  
Chao Li ◽  
Junru Zhang ◽  
...  

In this study, nitrogen-deficient graphitic carbon nitride (M-LS-g-C3N4) with a mesoporous structure and a large specific surface area was obtained by calcination after melt pretreatment using urea as a precursor. X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption, X-ray photoelectron spectroscopy (XPS), UV-Vis, ESR and photoluminescence (PL) were used to characterize the structure, morphology and optical performance of the samples. The TEM results showed the formation of a mesoporous structure on the 0.1[Formula: see text]M-LS-g-C3N4 surface. The porous structure led to an increase in the specific surface area from 41.5[Formula: see text]m2/g to 124.3[Formula: see text]m2/g. The UV-Vis results showed that nitrogen vacancies generated during the modification process reduced the band gap of g-C3N4 and improved the visible light absorption. The PL spectra showed that the nitrogen defects promoted the separation of photogenerated electron–hole pairs. In the visible light degradation of methyl orange (MO), the reaction rate constant of 0.1[Formula: see text]M-LS-g-C3N4 reached 0.0086[Formula: see text][Formula: see text], which was 5.05 times that of pure g-C3N4. Superoxide radicals and photogenerated holes were found to be the main active species in the reaction system. This study provides an efficient, green and convenient means of preparing graphitic carbon nitride with a large specific surface area.


2012 ◽  
Vol 586 ◽  
pp. 10-17 ◽  
Author(s):  
Kai Jin Huang ◽  
Hou Guang Liu ◽  
Fang Li Yuan ◽  
Chang Sheng Xie

BiOCl/BiOI nanocomposites were synthesized using a thermal impregnation method for the first time. The intense visible-light absorption and large specific surface area gave 4wt.%BiOCl/BiOI nanocomposites the best visible-light photocatalytic properties among all the catalysts for the photodegradation of methyl orange,about 78% after 2 h. But decreased activities were obtained with the increase of BiOCl content in the nanocomposites. Considering the light absorption,specific surface area and the quantum efficiency, the high recombination of the photoinduced electron-hole pairs of the catalysts that lowed the quantum efficiency was believed to be the critical factor for their decreased photocatalytic activities.


2020 ◽  
Vol 196 ◽  
pp. 247-255
Author(s):  
Fang-yan Chen ◽  
Min-keng He ◽  
Yu-bin Tang ◽  
Cheng-yi He ◽  
Ke-ke Shu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document