The Global Attractor of the 3D Complex GL Equation and the Estimate of its Dimensionality

2012 ◽  
Vol 588-589 ◽  
pp. 2051-2054
Author(s):  
Ben Tu Li ◽  
Zhi Chao Yuan

In three-dimensional space, by using the method of a priori estimation, we have studied the complex-valued GL equation, which has the 2 -th power of the nonlinear term. We have proved that the existence of the global attractor of this equation with the problem of period and border value, and we have studied the dimensionality of Hausdorff and fractal of the global attractor.

2018 ◽  
pp. 52-56

Representación gráfica de las funciones complejas con el Mathematica Graphical display of complex functions with Mathematica Ricardo Velezmoro y Robert Ipanaqué Universidad Nacional de Piura, Urb. Miraflores s/n, Castilla, Piura, Perú. DOI: https://doi.org/10.33017/RevECIPeru2015.0008/ Resumen La representación gráfica de las funciones de valor complejo, de una variable compleja, es un tema de mucho interés dado que la gráfica de una función de este tipo tendría que ser dibujada en un espacio tetra dimensional. Este artículo presenta una propuesta para representar tales gráficas mediante el uso de un modelo basado en una submersión, del espacio tetra dimensional en el espacio tridimensional; para luego, con ayuda del Mathematica llegar a obtener una representación de las mencionadas gráficas en una pantalla 2D. Adicionalmente, se implementarán algunos comandos en el Mathematica, los mismos que permitirán realizar las representaciones de variados e interesantes ejemplos. Descriptores: función compleja, visualización, submersión Abstract The graphical display of complex-valued functions of a complex variable is a subject of much interest since the graph of such a function would have to be drawn in a four-dimensional space. This article presents a proposal to display such graphs using a model based on a submersion, from four-dimensional space to three-dimensional space; then, with the help of Mathematica arrive at a representation of the graphs mentioned in a 2D screen. Additionally, some commands are implemented in Mathematica, the same that will make representations varied and interesting examples. Keywords: complex function, visualization, submersion


2007 ◽  
Vol 7 (3) ◽  
Author(s):  
Hiroaki Kikuchi

AbstractWe study the existence and stability of standing wave for the Schrödinger-Poisson-Slater equation in three dimensional space. Let p be the exponent of the nonlinear term. Then we first show that standing wave exists for 1 < p < 5. Next, we show that when 1 < p < 7/3 and p ≠ 2, standing wave is stable for some ω > 0. We also show that when 7/3 < p < 5, standing wave is unstable for some ω > 0. Furthermore, we investigate the case of p = 2. We prove these results by using variational methods.


2018 ◽  
Vol 6 (2) ◽  
pp. 23-46 ◽  
Author(s):  
Д. Волошинов ◽  
Denis Voloshinov

The Apollonius problem on construction of circles, tangent to three arbitrary given circles of a plane, is one of classical geometry’s well-studied problems. The presented paper’s materials are directed at development a unified theory for Apollonius problem solving, taking into account it’s not only real, but also invisible complex-valued images. In the paper it has been demonstrated, that fundamental geometric structures, on which Apollonius problem is based on, are applicable not only to real, but also to complex-valued data, that makes possible to eliminate many exceptions, currently existing in it. In this paper Apollonius problem’s fundamental nature and its strong correlation with projective and quadratic geometric transformations has been disclosed. It has been proved that Apollonius problem and its analogues have a single solution method, in contrast to the prevailing idea that these problems can be solved only by separate particular methods. A concept of geometric experiment proposed by the author has allowed find out many previously unknown and discussed in this paper common factors, due to the set of many computational tests in the system Simplex for visual design of geometric models. In this paper is considered an example for solving an analogue of Apollonian problem for three-dimensional space, but proposed algorithm’s operation is universal, and it can be equally applied to solving similar problems in spaces of arbitrary dimensions. Obtained results demonstrate capabilities of methods for constructive modeling and multidimensional descriptive geometry in application to solving of complex mathematical problems, and determine the trends in development for automation systems of constructive geometric modeling.


2019 ◽  
Vol 22 (1) ◽  
pp. 1-53
Author(s):  
Luciano Boi

Abstract According to Kant, the axioms of intuition, i.e. space and time, must provide an organization of the sensory experience. However, this first orderliness of empirical sensations seems to depend on a kind of faculty pertaining to subjectivity, rather than to the encounter of these same intuitions with the real properties of phenomena. Starting from an analysis of some very significant developments in mathematical and theoretical physics in the last decades, in which intuition played an important role, we argue that nevertheless intuition comes into play in a fundamentally different way to that which Kant had foreseen: in the form of a formal or “categorical” yet not sensible intuition. We show further that the statement that our space is mathematically three-dimensional and locally Euclidean by no means follows from a supposed a priori nature of the sensible or subjective space as Kant claimed. In fact, the three-dimensional space can bear many different geometrical and topological structures, as particularly the mathematical results of Milnor, Smale, Thurston and Donaldson demonstrated. On the other hand, it has been stressed that even the phenomenological or perceptual space, and especially the visual system, carries a very rich geometrical organization whose structure is essentially non-Euclidean. Finally, we argue that in order to grasp the meaning of abstract geometric objects, as n-dimensional spaces, connections on a manifold, fiber spaces, module spaces, knotted spaces and so forth, where sensible intuition is essentially lacking and where therefore another type of mathematical idealization intervenes, we need to develop a new form of intuition.


1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


2019 ◽  
Author(s):  
Jumpei Morimoto ◽  
Yasuhiro Fukuda ◽  
Takumu Watanabe ◽  
Daisuke Kuroda ◽  
Kouhei Tsumoto ◽  
...  

<div> <div> <div> <p>“Peptoids” was proposed, over decades ago, as a term describing analogs of peptides that exhibit better physicochemical and pharmacokinetic properties than peptides. Oligo-(N-substituted glycines) (oligo-NSG) was previously proposed as a peptoid due to its high proteolytic resistance and membrane permeability. However, oligo-NSG is conformationally flexible and is difficult to achieve a defined shape in water. This conformational flexibility is severely limiting biological application of oligo-NSG. Here, we propose oligo-(N-substituted alanines) (oligo-NSA) as a new peptoid that forms a defined shape in water. A synthetic method established in this study enabled the first isolation and conformational study of optically pure oligo-NSA. Computational simulations, crystallographic studies and spectroscopic analysis demonstrated the well-defined extended shape of oligo-NSA realized by backbone steric effects. The new class of peptoid achieves the constrained conformation without any assistance of N-substituents and serves as an ideal scaffold for displaying functional groups in well-defined three-dimensional space, which leads to effective biomolecular recognition. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document