Optimal Design of the Three-Degree-of-Freedom Parallel Manipulator in a Spray-Painting Equipment

Robotica ◽  
2019 ◽  
Vol 38 (6) ◽  
pp. 1064-1081
Author(s):  
Guang Yu ◽  
Jun Wu ◽  
Liping Wang ◽  
Ying Gao

SUMMARYSpray-painting equipments are important for the automatic spraying of long conical objects such as rocket fairing. This paper proposes a spray-painting equipment that consists of a feed worktable, a gantry frame and two serial–parallel mechanisms and investigates the optimal design of PRR–PRR parallel manipulator in serial–parallel mechanisms. Based on the kinematic model of the parallel manipulator, the conditioning performance, workspace and accuracy performance indices are defined. The dynamic model is derived using virtual work principle and dynamic evaluation index is defined. The conditioning performance, workspace, accuracy performance and dynamic performance are involved in multi-objective optimization design to determine the optimal geometrical parameters of the parallel manipulator. Furthermore, the geometrical parameters of the gantry frame are optimized. An example is given to show how to determine these parameters by taking a long object with conical surface as painted object.

Robotica ◽  
2021 ◽  
pp. 1-15
Author(s):  
Jun Wu ◽  
Xiaojian Wang ◽  
Binbin Zhang ◽  
Tian Huang

Abstract This paper deals with the multi-objective optimal design of a novel 6-degree of freedom (DOF) hybrid spray-painting robot. Its kinematic model is obtained by dividing it into serial and parallel parts. The dynamic equation is formulated by virtual work principle. A performance index for evaluating the compactness of robot is presented. Taking compactness, motion/force transmissibility, and energy consumption as performance indices, the optimal geometric parameters of the robot are selected in the Pareto-optimal set by constructing a comprehensive performance index. This paper is very useful for the development of the spray-painting robot.


2021 ◽  
Vol 11 (7) ◽  
pp. 3017
Author(s):  
Qiang Gao ◽  
Siyu Gao ◽  
Lihua Lu ◽  
Min Zhu ◽  
Feihu Zhang

The fluid–structure interaction (FSI) effect has a significant impact on the static and dynamic performance of aerostatic spindles, which should be fully considered when developing a new product. To enhance the overall performance of aerostatic spindles, a two-round optimization design method for aerostatic spindles considering the FSI effect is proposed in this article. An aerostatic spindle is optimized to elaborate the design procedure of the proposed method. In the first-round design, the geometrical parameters of the aerostatic bearing were optimized to improve its stiffness. Then, the key structural dimension of the aerostatic spindle is optimized in the second-round design to improve the natural frequency of the spindle. Finally, optimal design parameters are acquired and experimentally verified. This research guides the optimal design of aerostatic spindles considering the FSI effect.


2012 ◽  
Vol 594-597 ◽  
pp. 795-799
Author(s):  
Gui Tao Chen ◽  
De Min Wei

A displacement-based optimization design method of RC structure was proposed by combining direct displacement-based design method with nonlinear programming technique. To avert the influence of target displacement, the stationary constraint displacement was presented, and the target displacement can be updated during the optimal design process. Principle of virtual work and Gaussian integral method was employed to simplify the explicit relationship between horizontal displacement and the section dimension. Comparison analysis of the local optimal results corresponding to different displacement shapes was conducted to achieve global optimal design. The numerical tests presented demonstrate the computational advantages of the discussed methods and suggesting that the proposed method is a reliably and efficiently tool for displacement-based optimal design.


Robotica ◽  
2015 ◽  
Vol 34 (6) ◽  
pp. 1383-1402 ◽  
Author(s):  
Ali Taherifar ◽  
Hassan Salarieh ◽  
Aria Alasty ◽  
Mohammad Honarvar

SUMMARYThe N-3 Revolute-Prismatic-Spherical (N-3RPS) manipulator is a kind of serial-parallel manipulator and has higher stiffness and accuracy compared with serial mechanisms, and a larger workspace compared with parallel mechanisms. The locking mechanism in each joint allows the manipulator to be controlled by only three wires. Modeling the dynamics of this manipulator presents an inherent complexity due to its closed-loop structure and kinematic constraints. In the first part of this paper, the inverse kinematics of the manipulator, which consists of position, velocity, and acceleration, is studied. In the second part, the inverse and forward dynamics of the manipulator is formulated based on the principle of virtual work and link Jacobian matrices. Finally, the numerical example is presented for some trajectories.


Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 551 ◽  
Author(s):  
Xiaoyong Wu

Optimal design and singularity analysis are two important aspects of mechanism design, and they are discussed within a spatial parallel manipulator in this work. Resorting to matrix transformation, the parametric kinematic model is established, upon which the inverse position and Jacobian are analyzed. As for optimal design, dexterity and payload indices are taken into consideration. From the simulation results, two optimal configurations are obtained, namely, the star-shaped one and the T-shaped one, and they respectively own the best payload performance and the best dexterity performance. Moreover, the concept of shape singularity is introduced and generalized, which is a special type of singularity that will lead to the singularity in all configurations. The shape singularity of the proposed manipulator is indicated by dexterity index and identified by screw theory. A case study is presented to demonstrate the implication of the shape singularity. Both optimal and singular configurations are useful, and new devices can thus be envisaged for this type of application.


Author(s):  
Dan Zhang ◽  
Zhen Gao ◽  
XiaoLin Hu ◽  
Jason Parise

In this paper, a new design of a parallel manipulator is proposed for industrial applications, specifically for material surface finishing processes. Though most current parallel mechanisms have been based on the Stewart-Gough platform which has 6 degrees of freedom (DOF), the focus of this design is on a 3-DOF manipulator with one novel configuration. In order to benefit production, a parallel kinematic machine (PKM) capable of high speed industrial operations with high accuracy and rigidity is necessary. First, system modelling includes mobility study, inverse kinematic model, Jacobian matrix, singularity analysis and workspace calculation are conducted. Then, a CAD model is presented showing the optimum design features and detailed mechanics. Finally, finite element analysis is carried out for the device optimization.


2005 ◽  
Vol 29 (4) ◽  
pp. 645-654
Author(s):  
C.G. van Driel ◽  
Juan A. Carretero

In this paper, a kinematic calibration method for the 3-PRS parallel manipulator using a motion capture system is presented. Although parallel mechanisms present numerous advantages over their serial counterparts, an accurate kinematic model must be developed to facilitate their operation. Kinematic calibration is used to accurately determine the kinematic parameters of the kinematic model to improve the overall accuracy of the mechanism. The kinematic calibration of the 3-PRS parallel manipulator will be examined by identification of the manipulator's kinematic parameters, an introduction to the motion capture system used, and the presentation of die calibration method itself. For preliminary testing purposes, a virtual model of the manipulator has been generated in CAD to validate the calibration method. The calibration method initially determines the joint locations and orientations, from which the remaining kinematic parameters can be resolved. Preliminary testing using the virtual model indicates the method is valid and can accurately determine the modelled parameters. Once the physical manipulator is operational, alterations the calibration method will be required to account for manufacturing and assembly tolerances/errors, joint offsets and noise during the static captures.


Author(s):  
Jiangzhen Guo ◽  
Dan Wang ◽  
Rui Fan ◽  
Wuyi Chen ◽  
Guohua Zhao

A calibration method of a hexaglide parallel manipulator is presented to improve its accuracy. A prototype of the hexaglide parallel manipulator is first proposed and its kinematics is analyzed. Through differentiating kinematic equations, 54 geometric error parameters are generated to present the pose error of the moving platform, on which an iterative algorithm for the calibration is based. The experiment starts with the data acquisition. All of measuring poses are newly selected based on the orthogonal design, and the deviations in each pose are measured by a laser tracker. Subsequently, 54 actual geometric parameters are identified by least squares method and compensated to the nominal kinematic model, which is assessed by 25 configurations to obtain the accuracy of the calibrated hexaglide parallel manipulator. It is discovered that the pose errors of the calibrated hexaglide parallel manipulator are significantly reduced and illustrate the validity of the calibration method to improve its accuracy. Finally, we discussed the feasibility of implementing this method in high-accuracy calibration of variant-scale parallel mechanisms.


Author(s):  
Leiying He ◽  
Qinchuan Li ◽  
Xubiao Zhu ◽  
Chuanyu Wu

Kinematic calibration is commonly used to improve the accuracy of a parallel mechanism. This paper presents an effective method for calibrating an overconstrained three degrees-of-freedom parallel manipulator employing a direct kinematic model. An error-mapping function is formulated from the differential of its kinematic model which is established through vector chains with the geometrical errors. To simplify the measurement of the error, the positioning and orientation error of the moving platform is replaced by the positioning error of the tool center point, which can be measured by a laser tracker accurately. Three different objective functions F1, F2, and F∞, respectively, representing 1-norm, 2-norm, and inf-norm of the error vector are used to identify the geometrical parameters of the manipulator. The results of computer simulation show that parameters after kinematic calibration through minimizing the objective function F2 is highly accurate and efficient. A calibration experiment is carried out to verify the effectiveness of the method. The maximum residual of calibration points reduces greatly from 3.904 to 0.256 mm during parameter identification. The positioning errors of all points on and inside the space surrounded by the calibration points are smaller than 0.4 mm after error compensation.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1848
Author(s):  
Ahmed Hemeida ◽  
Mohamed Y. Metwly ◽  
Ayman S. Abdel-Khalik ◽  
Shehab Ahmed

The transition to electric vehicles (EVs) has received global support as initiatives and legislation are introduced in support of a zero-emissions future envisaged for transportation. Integrated on-board battery chargers (OBCs), which exploit the EV drivetrain elements into the charging process, are considered an elegant solution to achieve this widespread adoption of EVs. Surface-mounted permanent-magnet (SPM) machines have emerged as plausible candidates for EV traction due to their nonsalient characteristics and ease of manufacturing. From an electric machine design perspective, parasitic torque ripple and core losses need to be minimized in integrated OBCs during both propulsion and charging modes. The optimal design of EV propulsion motors has been extensively presented in the literature; however, the performance of the optimal traction machine under the charging mode of operation for integrated OBCs has not received much attention in the literature thus far. This paper investigates the optimal design of a six-phase SPM machine employed in an integrated OBC with two possible winding layouts, namely, dual three-phase or asymmetrical six-phase winding arrangements. First, the sizing equation and optimized geometrical parameters of a six-phase 12-slot/10-pole fractional slot concentrated winding (FSCW)-based SPM machine are introduced. Then, variations in the output average torque, parasitic torque ripple, and parasitic core losses with the slot opening width and the PM width-to-pole pitch ratio are further investigated for the two proposed winding layouts under various operation modes. Eventually, the optimally designed machine is simulated using analytical magnetic equivalent circuit (MEC) models. The obtained results are validated using 2D finite element (FE) analysis.


Sign in / Sign up

Export Citation Format

Share Document