Nitrogen and Phosphorus Removal and Biomass Production by the Green Microalgae in Piggery Wastewater

2012 ◽  
Vol 599 ◽  
pp. 608-613
Author(s):  
Jen Jeng Chen ◽  
Yu Ru Li ◽  
Meei Fang Shue ◽  
Li Ho Tseng ◽  
Wen Liang Lai

Use of microalgae to remove inorganic nutrients from wastewater and their great potential for low-cost biomass production is gaining attraction. The effect of piggery wastewater content, aeration rate, cultivation temperature, and light intensity on nitrogen and phosphorus removal and biomass production were studied by using a Box-Behnken experimental design under full factorial methodology. Under experimental conditions considered cultures with aeration increased the ammonium and orthophosphate removal efficiency up to an average of 65.3±17 % and 51±7.2 %, respectively and an increase of biomass productivity ranging from 20.8±11 mg/L.d to 52.3±5.5 mg/L.d. The aeration rate was the most important factor influencing the nutrients removal and biomass production.

2005 ◽  
Vol 28 (4) ◽  
pp. 263-268 ◽  
Author(s):  
Daizo TAKAOKA ◽  
Mineo IKEMATSU ◽  
Yoshihiro KUROKAWA ◽  
Masahiro ISEKI ◽  
Atsushi YAMADA ◽  
...  

2012 ◽  
Vol 622-623 ◽  
pp. 1738-1741 ◽  
Author(s):  
Yong Feng Li ◽  
Jian Yu Yang ◽  
Guo Cai Zhang

A2O process is shortened form Anaerobic-Anoxic-Aerobic process, which can achieve carbon, nitrogen and phosphate removal, is widely used for its low cost and high efficiency. The Experiment using a 52.15 L anaerobic-anoxic- aerobic (A2O) reactor with simulate synthetic wastewater, by adjusting the aeration of Aerobic units, observing the performance of nitrogen and phosphorus removal under different dissolved oxygen(DO). The result of the whole operation show that the system can not keep a high TN removal efficiency under high aeration, and the low aeration made the system a significant decline in nitrogen and phosphorus removal.


2010 ◽  
Vol 13 (1) ◽  
pp. 48-58
Author(s):  
Canh Thanh Truong

This paper describes a research to use an innovative combined biological process, upflow sludge blanket filter (USBF), that rapidly and economically remove BOD, nitrogen and phosphorus from piggery wastewater. The USBF design is a continuous flow system incorporating the aeration zone, clarifier and anoxic zone into a single tank. The research showed a result of 97%, 80%, 94%, 90% and 85% for COD, BOD5, SS, nitrogen and phosphorus removal, respectively. This is concluded that USBF can be used as a simple and economic method to treat pigerry wastewater.


2015 ◽  
Vol 73 (7) ◽  
pp. 1520-1531 ◽  
Author(s):  
Yu-Ru Lee ◽  
Jen-Jeng Chen

The bioprospecting of potentially mixotrophic microalgae in a constructed wetland was conducted. A locally isolated microalga, Chlorella sp., was grown to determine the effect of temperature, aeration rate, and cultivation time on simultaneous biomass production and nutrient removal from piggery wastewater using central composite design (CCD). The most important variable for the biomass productivity of Chlorella sp. was aeration rate, while that for lipid content and nutrient removal efficiency was cultivation time. Total nitrogen (TN) and total phosphorus (TP) removal efficiencies were higher than that of chemical oxygen demand (COD) from piggery wastewater. The CCD results indicate that the highest biomass productivity (79.2 mg L−1 d−1) and simultaneous nutrient removal efficiency (TN 80.9%, TP 99.2%, COD 74.5%) were obtained with a cultivation temperature of 25 °C, a cultivation time of 5 days, and an air aeration rate of 1.6 L L−1 min−1. Palmitic acid (C16:0) and linoleic acid (C18:2) were both abundant in Chlorella sp. cells under mixotrophic cultivation with piggery wastewater.


2012 ◽  
Vol 66 (4) ◽  
pp. 695-703 ◽  
Author(s):  
Xia Yu ◽  
Thomas König ◽  
Zhang Qi ◽  
Gao Yongsheng

This paper assesses the nitrogen and phosphorus removal efficiency of seven plant species (Schoenoplectus lacustris, Vetiveria zizanioides, Acorus calamus, Canna indica, Zizania latifolia, Phragmites communis, and Iris pseudacorus) commonly used in constructed wetland systems in southern China. The investigation considers two aspects that are relevant to determine nutrient removal efficiency: plants’ biomass production and nutrient content in water effluent. Both assessments are correlated with each other. Three different hydraulic retention times with different nutrient loads have been applied in this ex-situ trial. The plants’ biomass production correlates positively with the effluent's nutrient removal efficiency. Six out of seven species reviewed produce more biomass above ground than below ground (average: 67% of dried biomass in aerial part); only I. pseudacorus produces more biomass below ground. S. lacustris, V. zizanioides, I. pseudacorus, and C. indica have performed best in terms of nutrient removal efficiency (65.6–90.2% for nitrogen; 67.7–84.6% for phosphorus).


2017 ◽  
Vol 14 (2) ◽  
pp. 99-106 ◽  
Author(s):  
Zhengan Zhang ◽  
Shulin Pan ◽  
Fei Huang ◽  
Xiang Li ◽  
Juanfang Shang ◽  
...  

2004 ◽  
Vol 31 (4) ◽  
pp. 349-356
Author(s):  
Li Na ◽  
Li Zhidong ◽  
Li Guode ◽  
Wang Yan ◽  
Wu Shiwei ◽  
...  

2000 ◽  
Vol 41 (9) ◽  
pp. 139-145
Author(s):  
R. Kayser

The German design guideline A 131 “Design of single stage activated sludge plants” was amended in 1999. The main changes of the guideline from 1991 are outlined. The design procedure for plants with nitrogen and phosphorus removal is presented.


Sign in / Sign up

Export Citation Format

Share Document