The Application of Fiber Reinforced Concrete in Cement Concrete Pavement

2013 ◽  
Vol 634-638 ◽  
pp. 2094-2097 ◽  
Author(s):  
Tao Zhang ◽  
Yun Yun Xu ◽  
Zhen Rong Lin

Concrete is the most widely used building material in the world. In terms of traffic and bridge construction, concrete is also the most widely used building materials. The cement concrete of the inherent advantages of having a high compressive strength while also has easy to produce cracks, poor impact resistance inherent weaknesses. These weaknesses limit the application of cement concrete. In order to improve the comprehensive quality of the concrete, to further improve the scope of application of cement concrete pavement, the main problems of cement concrete pavement is analyzed. Then the progress of the current hot research field of fiber reinforced concrete is analyzed comprehensively. Finally, on the basis of summing up the status quo, the next step is to study key issues is presented.

2012 ◽  
Vol 252 ◽  
pp. 276-279
Author(s):  
Xiao Qing Yu ◽  
Mao Lin ◽  
Guang Long Geng ◽  
Li Jia ◽  
Na Wei

In this paper, a cement concrete pavement, steel fiber reinforced concrete with than the experimental study, the analysis of steel fiber reinforced concrete pavement engineering, test results show that the steel fibers in the concrete evenly distributed, with cement mortarbetter integration, better crack resistance of concrete, and shrinkage of steel fiber reinforced concrete is much smaller than the specification requirements, and so has a great advantage for pavement repair.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


1985 ◽  
Vol 64 ◽  
Author(s):  
Surendra P. Shah

ABSTRACTDespite its extensive use, low tensile strength has been recognized as one of the major drawbacks of concrete. Although one has learned to avoid exposing concrete structures to adverse static tensile load, these cannot be shielded from short duration dynamic tensile stresses. Such loads originate from sources such as impact from missiles and projectiles, wind gusts, earthquakes and machine vibrations. The need to accurately predict the structural response and reserve capacity under such loading has led to an interest in the mechanical properties of the component materials at high rates of straining.One method to improve the resistance of concrete when subjected to impact and/or impulsive loading is by the incorporation of randomly distributed short fibers. Concrete (or Mortar) so reinforced is termed fiber reinforced concrete (FRC). Moderate increase in tensile strength and significant increases in energy absorption (toughness or impact-resistance) have been reported by several investigators in static tests on concrete reinforced with randomly distributed short steel fibers. A theoretical model to predict fracture toughness of FRC is proposed. This model is based on the concept of nonlinear elastic fracture mechanics.As yet no standard test methods are available to quantify the impact resistance of such composites, although several investigators have employed a variety of tests including drop weight, swinging pendulums and the detonation of explosives. These tests though useful in ascertaining the relative merits of different composites do not yield basic material characteristics which can be used for design.The author has recently developed an instrumented Charpy type of impact test to obtain basic information such as load-deflection relationship, fracture toughness, crack velocity and load-strain history during an impact event. From this information, a damage based constitutive model was proposed. Relative improvements in performance due to the addition of fibers as observed in the instrumented tests are also compared with other conventional methods.


2013 ◽  
Vol 788 ◽  
pp. 550-553
Author(s):  
Rong Guo

Steel fiber reinforced concrete is a new type of composite material developed rapidly in recent years. It is widely used in various types of engineering construction field with its good crack resistance, flexural toughness and impact resistance. Meanwhile, Steel fiber reinforced concrete has high tensile strength and fracture toughness, fatigue resistance, and forming pouring easy,for variety of complex stress position of the structure. This paper provides something for this new concrete materials in the project of the building structure design and construction, through the introduction of the main performance of steel fiber reinforced concrete.


Sign in / Sign up

Export Citation Format

Share Document